Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 891: 164602, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37277036

ABSTRACT

Agricultural ditches are frequently included in the panel of landscape elements to be managed to minimize the negative impacts of agriculture on the environment, particularly water contamination. A new mechanistic model simulating pesticide transfer in ditch networks during flood events was developed for help in designing ditch management. The model considers pesticide sorption processes to soil, living vegetation and litter and is adapted to heterogeneous and infiltrating tree-like ditch networks, with a reach resolution. The model was evaluated with pulse tracer experiments conducted on two vegetated and litter-rich ditches and with two contrasting pesticides, namely, diuron and diflufenican. It appears necessary to consider exchange of only a small proportion of the water column with the ditch materials to achieve a good reproduction of the chemogram. The model simulates well the chemogram of diuron and diflufenican during calibration and validation (with Nash performance criteria values ranging from 0.74 to 0.99). The calibrated thicknesses of the soil and water layers contributing to the sorption equilibrium were very small. The former was intermediate between the theoretical transport distance by diffusion and the thicknesses usually considered in mixing models for pesticide remobilization by field runoff. The numerical exploration of PITCH showed that during flood events, retention in ditches is mainly due to adsorption of the compound by the soil and litter. Retention is thus driven by the corresponding sorption coefficients and by parameters controlling the mass of these sorbents such as ditch width and litter cover. The latter parameters can be modified by management practices. In some cases, infiltration can contribute significantly to pesticide removal from surface water and in return participate in soil and groundwater contamination. Finally, PITCH exhibits a consistent behaviour in predicting pesticide attenuation and is shown to be relevant for evaluating ditch management strategies.

2.
Sci Total Environ ; 893: 164815, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37315602

ABSTRACT

Severe water pollution issues due to legacy and contemporary pesticides exist in tropical regions and are linked to cash crops requiring intensive plant protection practices. This study aims to improve knowledge about contamination routes and patterns in tropical volcanic settings to identify mitigation measures and analyse risk. To this aim, this paper analyses four years of monitoring data from 2016 to 2019 of flow discharge and weekly pesticide concentrations in the rivers of two catchments grown predominantly with banana and sugar cane in the French West Indies. The banned insecticide chlordecone, applied in banana fields from 1972 to 1993, was still the major source of river contamination, while the currently used herbicide glyphosate, its metabolite aminomethylphosphonic acid (AMPA), and postharvest fungicides also exhibited high contamination levels. A value of 0.5 of the Gustafson Ubiquity Score (GUS) was shown to separate contaminant and noncontaminant pesticides, indicating a high vulnerability to pollution by pesticides in this tropical volcanic context. The patterns and routes of river exposure to pesticides differed markedly between the pesticides in accordance with the hydrological behaviour of volcanic islands and the history and nature of pesticide uses. Concerning chlordecone and its metabolites, observations confirmed previous findings of a main subsurface origin of river contamination by this compound but also showed large erratic short-term variations, suggesting the influence of fast surface transport processes such as erosion for legacy pesticides with large sorption capacity. Concerning herbicides and postharvest fungicides, observations have suggested that surface runoff and fast lateral flow in the vadose zone control river contamination. Accordingly, mitigation options need to be considered differently for each type of pesticide. Finally, this study points out the need for developing specific exposure scenarios for tropical agricultural contexts in the European regulation procedures for pesticide risk assessment.

3.
Environ Pollut ; 324: 121283, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36804884

ABSTRACT

Recently, Comte et al. (2022) re-examined the natural degradation of chlordecone (CLD) in the soils of the French West Indies (FWI) by introducing an additional 'dissipation parameter' into the WISORCH model developed by Cabidoche et al. (2009). Recent data sets of CLD concentrations in FWI soils obtained by Comte et al. enabled them optimizing the model parameters, resulting in significantly shorter estimates of pollution persistence than in the original model. Their conclusions jeopardize the paradigm of a very limited degradation of CLD in FWI soils, which may lead to an entire revision of the management of CLD contamination. However, we believe that their study is questionable on several important aspects. This includes potential biases in the data sets and in the modeling approach. It results in an inconsistency between the estimated dissipation half-life time (DT50) of five years that the authors determined for CLD and the fate of CLD in soil from the application period 1972-1993 until nowadays. Most importantly, a rapid dissipation of CLD in the field as proposed by Comte et al. is not sufficiently supported by data and estimates. Hence, the paradigm of long-term persistence of CLD in FWI soils is still to be considered.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Chlordecone/analysis , Chlordecone/metabolism , Insecticides/analysis , Soil , Half-Life , Soil Pollutants/analysis , West Indies
4.
Environ Sci Pollut Res Int ; 30(8): 21468-21480, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36271996

ABSTRACT

Temperature is a key factor that influences pesticide degradation. Extrapolating degradation half-lives (DT50) measured at a given temperature to different temperatures remains challenging, especially for tropical conditions with high temperatures. In this study, the use of the standard Arrhenius equation for correcting temperature effects on pesticide degradation in soils was evaluated and its performance was compared with that of alternative Arrhenius-based equations. To do so, a database of 509 DT50 values measured between 5 and 35 °C for 32 pesticides on tropical and temperate soils was compiled for the first time through an extensive literature search. The temperature correction models were fitted to the database using linear mixed regression approaches that included soil type and compound effects. No difference in the temperature dependence of DT50 between tropical and temperate soils was detected, regardless of the model. A comparison of the prediction performances of the models showed that constant activation energy (Ea) cannot be considered valid for the whole range of temperatures. The classical Arrhenius equation with an Ea of 65.4 kJ.mol-1, as recommended by the European Food Safety Authority (EFSA), was shown to be valid for correcting the DT50 only for temperatures ranging from 5 to 20 °C. However, for temperatures greater than 20 °C, which are common in tropical environments, the median Ea was significantly lower at 10.3 kJ.mol-1. These findings suggest the need to adapt the standard temperature correction of the European pesticide risk assessment temperature procedure when it is applied in tropical settings.


Subject(s)
Pesticides , Soil Pollutants , Pesticides/analysis , Soil , Temperature , Half-Life , Soil Pollutants/analysis
6.
Environ Sci Pollut Res Int ; 25(34): 33882-33894, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30022390

ABSTRACT

RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.


Subject(s)
Agriculture/methods , Ecotoxicology/methods , Pesticides/toxicity , Animals , Ecology , Environment , Environmental Monitoring/methods , Environmental Policy , Environmental Pollutants/toxicity , France , Humans , Risk Assessment
7.
Environ Sci Pollut Res Int ; 24(12): 11752-11763, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28337625

ABSTRACT

The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.


Subject(s)
Fluorescent Dyes/chemistry , Herbicides/isolation & purification , Soil Pollutants/isolation & purification , Adsorption , Environmental Restoration and Remediation , Fluorescein/chemistry , Plants , Rhodamines/chemistry , Soil/chemistry
8.
Sci Total Environ ; 573: 716-726, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27591522

ABSTRACT

Pesticide sorption to ditch-bed materials can efficiently decrease pesticide concentrations in the flowing water. Pesticide sorption depends on flood characteristics and the nature and abundance of ditch-bed materials, such as soils, living and decaying vegetation and ash. However, the affinities of pesticides for various ditch-bed materials have rarely been investigated, and variations in the global sorption capacity of ditch beds resulting from their heterogeneous compositions and variable flood characteristics have not been determined. Thus, we studied the variability of sorption capacities of ditch-bed materials for glyphosate and diuron in three catchments in France and propose a method for calculating global sorption processes in heterogeneous ditch beds. The methodology consists in estimating a global sorption coefficient for the composite ditch-bed materials (Kdditch) and an indicator of the amount of pesticide potentially retained by sorption during a flood event (SPRI). Furthermore, we computed the Kdditch and SPRI of glyphosate and diuron for 8 ditches subjected to 3h flood events with water levels varying from 0.5 to 15cm. Our results show that increasing the water level from 0.5 to 15cm resulted in a 90% decrease in the sorption capacities of the ditch beds for both pesticides. At a medium water depth of 5cm, SPRI varied from 25 to 51% and from 7 to 35% among the ditches for glyphosate and diuron, respectively. The variabilities of the glyphosate and diuron sorption capacities among the ditches were mainly driven by the nature and abundance of soil and ash. As the management of farm ditches, performed to maintain their hydraulic performance, modifies the abundances of various ditch-bed materials, it constitutes a potential lever of action for water quality improvement. Thus, Kdditch and SPRI could serve as rapid and cost-effective tools for optimizing ditch network management strategies to improve water quality in cropped catchments.


Subject(s)
Diuron/analysis , Glycine/analogs & derivatives , Herbicides/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Adsorption , Environmental Monitoring , Farms , France , Glycine/analysis , Glyphosate
9.
PLoS One ; 11(3): e0151952, 2016.
Article in English | MEDLINE | ID: mdl-26990089

ABSTRACT

Many farming-system studies have investigated the design and evaluation of crop-management practices with respect to economic performance and reduction in environmental impacts. In contrast, little research has been devoted to analysing these practices in terms of matching the recurrent context-dependent demand for resources (labour in particular) with those available on the farm. This paper presents Dhivine, a simulation model of operational management of grape production at the vineyard scale. Particular attention focuses on representing a flexible plan, which organises activities temporally, the resources available to the vineyard manager and the process of scheduling and executing the activities. The model relies on a generic production-system ontology used in several agricultural production domains. The types of investigations that the model supports are briefly illustrated. The enhanced realism of the production-management situations simulated makes it possible to examine and understand properties of resource-constrained work-organisation strategies and possibilities for improving them.


Subject(s)
Agriculture/methods , Crops, Agricultural , Models, Theoretical , Vitis/physiology , Algorithms , Conservation of Natural Resources , Pest Control/methods , Vitis/growth & development
10.
Sci Total Environ ; 463-464: 395-403, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23827360

ABSTRACT

Chlordecone is a persistent organochlorine insecticide that, even decades after its ban, poses a threat to the environment and human health. Nevertheless, its environmental fate in soils has scarcely been investigated, and elementary data on its degradation and behaviour in soil are lacking. The mineralisation and sorption of chlordecone and the formation of possible metabolites were evaluated in a tropical agricultural andosol. Soil microcosms with two different soil horizons (S-A and S-B) were incubated for 215 days with 14C-chlordecone. At five different times (1, 33, 88, 150 and 215 days) the extractability of 14C-chlordecone was analysed. Mineralisation was monitored using 14CO2 traps of NaOH. The appearance of metabolites was studied using thin layer and gas chromatography techniques. At the end of the experiment, the water soluble 14C-activity was 2% of the remaining 14C-chlordecone for S-A and 8% for S-B. Only 12% of the remaining activity was non extractable and more than 80% remained extractable with organic solvents. For the first time to our knowledge, a significant mineralisation of chlordecone was measured in a microcosm under aerobic conditions (4.9% for S-A and 3.2% for S-B of the initial 14C-activity). The drastically lower emission of 14CO2 in sterilised microcosms indicated the biological origin of chlordecone mineralisation in the non-sterilised microcosms. No metabolites could be detected in the soil extracts. The mineralisation rate of chlordecone decreased by one order of magnitude throughout the incubation period. Thus, the chlordecone content in the soil remained large. This study confirms the existence of chlordecone degrading organisms in a tropical andosol. The reasons why their activity is restricted should be elucidated to allow the development of bioremediation approaches. Possible reasons are a heterogeneous distribution a chlordecone between sub-compartments with different microbial activities or a degradation of chlordecone by co-metabolic processes controlled by a limited supply of nutrients.


Subject(s)
Chlordecone/chemistry , Soil Microbiology , Soil/chemistry , Aerobiosis , Biodegradation, Environmental , Time Factors , Tropical Climate
11.
J Environ Qual ; 38(3): 1031-41, 2009.
Article in English | MEDLINE | ID: mdl-19329691

ABSTRACT

The aim of this article is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate] contaminates water and soils at two scales, subcatchment and catchment. The study site was a small banana (Musa spp.)-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean. Two application campaigns were conducted, one in 2003 on 40% of the catchment and one in 2006 on 12%. The study involved monitoring for 100 d the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and groundwaters in a 2400 m(2) subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limits the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favors percolation toward the shallow groundwater. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in the hydrographic network. Two successive phases of stream water contamination were observed, corresponding to two distinct contamination mechanisms: an event-dominated contamination phase (of <30 d) when transport was linked to overland flow during precipitation shortly after application, and a stabilized contamination phase when transport originated mainly from the drainage of the shallow aquifer. Lastly, comparing the losses of the two phases during 2003 and 2006 showed that shallow groundwater, which is promoted in such permeable soils under abundant tropical rainfalls, seems to be the main contributor to stream contamination.


Subject(s)
Antinematodal Agents/analysis , Fresh Water/analysis , Organothiophosphorus Compounds/analysis , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis , Guadeloupe , Musa/growth & development , Tropical Climate
12.
Environ Sci Technol ; 41(4): 1137-44, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593711

ABSTRACT

Realistic estimation of sorption parameters is essential to predict long-term herbicide availability in soils and their contamination of surface water and groundwater. This study examined the temporal change of an effective partition coefficient Kd(eff) for the herbicides simazine, diuron, and oryzalin from a 0.12 ha field experiment during 7 vineyard growing seasons. Kd(eff) is the ratio of solvent extractable herbicide concentrations in the top soil (0-2 cm) to the average concentrations in runoff water and is considered to assess the effective availability of herbicides to runoff transfer. Kd(eff) increased largely with aging time since application, from values similar to those of the literature (determined in 24 h batch conditions, Kd(ref)), up to 88, 164, and 30 times these initial values for simazine, diuron, and oryzalin respectively. The seasonal variation of Kd(eff) values between years and compounds could be adequately described by a unique model, taking into account the cumulative rainfall since application and Kd(ref) of each compound. This simple model was able to represent the influence of the soil moisture content and its changes in the different biological and physicochemical processes that may contribute to the (bio)available, sorbed, or entrapped state of any of the studied herbicides with aging time under Mediterranean climate.


Subject(s)
Dinitrobenzenes/analysis , Diuron/analysis , Herbicides/analysis , Simazine/analysis , Soil Pollutants/analysis , Sulfanilamides/analysis , Water Pollutants, Chemical/analysis , Agriculture , Dinitrobenzenes/chemistry , Diuron/chemistry , Environmental Monitoring , France , Half-Life , Herbicides/chemistry , Models, Theoretical , Rain , Simazine/chemistry , Soil Pollutants/chemistry , Sulfanilamides/chemistry , Temperature , Time Factors , Vitis , Water Movements , Water Pollutants, Chemical/chemistry
13.
Chemosphere ; 57(8): 921-30, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15488582

ABSTRACT

An experimental study was conducted in a 91.4-ha Mediterranean vineyard catchment in southern France to characterize the fate and transport of oryzalin in runoff water and thus to assess the risk of contamination of surface waters. Oryzalin concentrations in soil were monitored on two fields, one no-till and one tilled from March 1998 to March 2000. Concentrations in solution and on solid phase of runoff water were measured at the outlets of both fields and the catchment. The droughts in the two summer periods reduced the dissipation of oryzalin and increased its field half-life up to 35 days. Consequently, oryzalin was detected throughout the year in runoff water, with maximum dissolved concentrations > 600 microg l(-1) at the field scale. Oryzalin transport essentially occurred in solution. At the no-till field, seasonal losses were 2.29% and 1.89% of the applied amount in 1998 and 1999, respectively. The corresponding values at the tilled field were 1.56% and 0.29%, since tillage reduced total losses by reducing surface runoff. At the catchment scale, oryzalin concentrations were smaller than those at the field scale, due to dilution effects and staggering of application. Large part of the overland flow from the fields reinfiltrated in the ditches before reaching the outlet of the catchment. As a result, seasonal oryzalin losses were <0.2% of the applied amount.


Subject(s)
Agriculture/methods , Dinitrobenzenes/analysis , Fresh Water/analysis , Herbicides/analysis , Soil Pollutants/analysis , Sulfanilamides/analysis , Chromatography, High Pressure Liquid , Environmental Monitoring/statistics & numerical data , France , Half-Life , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...