Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
J Pathol Clin Res ; 10(4): e12389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970797

ABSTRACT

Mesonephric-type (or -like) adenocarcinomas (MAs) of the ovary are an uncommon and aggressive histotype. They appear to arise through transdifferentiation from Müllerian lesions creating diagnostic challenges. Thus, we aimed to develop a histologic and immunohistochemical (IHC) approach to optimize the identification of MA over its histologic mimics, such as ovarian endometrioid carcinoma (EC). First, we screened 1,537 ovarian epithelial neoplasms with a four-marker IHC panel of GATA3, TTF1, ER, and PR followed by a morphological review of EC to identify MA in retrospective cohorts. Interobserver reproducibility for the distinction of MA versus EC was assessed in 66 cases initially without and subsequently with IHC information (four-marker panel). Expression of PAX2, CD10, and calretinin was evaluated separately, and survival analyses were performed. We identified 23 MAs from which 22 were among 385 cases initially reported as EC (5.7%) and 1 as clear cell carcinoma. The interobserver reproducibility increased from fair to substantial (κ = 0.376-0.727) with the integration of the four-marker IHC panel. PAX2 was the single most sensitive and specific marker to distinguish MA from EC and could be used as a first-line marker together with ER/PR and GATA3/TTF1. Patients with MA had significantly increased risk of earlier death from disease (hazard ratio = 3.08; 95% CI, 1.62-5.85; p < 0.0001) compared with patients with EC, when adjusted for age, stage, and p53 status. A diagnosis of MA has prognostic implications for stage I disease, and due to the subtlety of morphological features in some tumors, a low threshold for ancillary testing is recommended.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , PAX2 Transcription Factor , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/mortality , PAX2 Transcription Factor/analysis , PAX2 Transcription Factor/metabolism , Biomarkers, Tumor/analysis , Middle Aged , Reproducibility of Results , Aged , Adult , Retrospective Studies , Prevalence , Immunohistochemistry , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma/mortality , Diagnosis, Differential , Observer Variation , Aged, 80 and over , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/diagnosis , Carcinoma, Endometrioid/mortality
2.
Pathologica ; 116(3): 170-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38979591

ABSTRACT

Embryonal tumors with multilayered rosettes (ETMR) are highly aggressive and therapy-resistant pediatric central nervous system (CNS) tumors that have three histological patters: embryonal tumor with abundant neuropil and true rosettes, ependymoblastoma, and medulloepithelioma. We present a case of ETMR in an 18-year-old woman with DICER1 syndrome. This report confirms the important role of DNA-methylation analysis in the classification of CNS embryonal tumors and the importance of investigating somatic and germline DICER1 mutations in all CNS embryonal tumors.


Subject(s)
DEAD-box RNA Helicases , Neoplasms, Germ Cell and Embryonal , Ribonuclease III , Humans , Female , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Adolescent , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , DNA Methylation
3.
Mod Pathol ; 37(9): 100539, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880352

ABSTRACT

EGFR aberrations are reported in a subset of myofibroblastic lesions with kinase domain duplication (EGFR-KDD) and exon 20 mutations being assigned to infantile fibrosarcomas (IFS), mesoblastic nephroma, and fibrous hamartoma of infancy (FHI), respectively. In this retrospective study, we correlated molecular findings with the histomorphology of 14 myofibroblastic lesions harboring such genetic changes identified by NGS. We additionally performed DNA methylation profiling (DNAmp) and immunohistochemistry. Lesions were from 10 males and 4 females with a mean age of 3 years (range, 0.3-14) and occurred subcutaneously in the upper limbs (n = 5), lower limbs (n = 3), back/thorax (n = 5), and the nasal cavity (n = 1). Eleven were cured by surgery, including 1 relapsed case. Two patients were lost to follow-up. One case was very recent, and the patient was biopsied. Histologically, the lesions showed a wide spectrum varying from classic FHI (n = 9) to IFS (n = 1) or lipofibromatosis-like tumors (LFT-like) (n = 2) or dermatofibrosarcoma protuberans-like (DFSP-like) (n = 1) to a predominantly myxoid spindle cell lesion (n = 1). Immunohistochemically, all neoplasms stained with CD34, whereas S100 was positive in 2/14. EGFR expression was observed in 9/10 cases. Molecularly, the IFS and 1 LFT-like harbored EGFR-KDD, whereas an exon 20 mutation was identified in all FHI, 1 LFT-like, the DFSP-like, and in predominant myxoid spindle cell lesion. By DNAmp, all but 2 cases formed a well-defined cluster, demonstrating that these lesions are also epigenetically related. In conclusion, EGFR kinase domain aberrations found in FHI, IFS, LFT-like, DFSP-like, and a spindle cell lesion with a predominant myxoid stroma of children and adolescents showed that these neoplasms with a broad morphologic spectrum belong to the group of protein kinase-related lesions with a distinct epigenetic signature. Molecular analyses, including DNAmp, help to identify and characterize this emerging category and become mandatory when targeted treatment is considered.

4.
Neuro Oncol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912846

ABSTRACT

The 2016 and 2021 World Health Organization (WHO) 2021 Classification of Central Nervous System (CNS) tumors have resulted in a major improvement of the classification of IDH-mutant gliomas. With more effective treatments many patients experience prolonged survival . However, treatment guidelines are often still based on information from historical series comprising both patients with IDHwt and IDH mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological and molecular factors associated with outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with an IDH-mutant grade 2 and grade 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.

5.
Acta Neuropathol ; 147(1): 95, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38847845

ABSTRACT

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Transcriptome , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Cell Proliferation/genetics , Male , Child , Female , Child, Preschool , Adolescent , Prognosis
6.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630384

ABSTRACT

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Subject(s)
Brain Neoplasms , Cytokines , Glioma , Microglia , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Microglia/metabolism , Microglia/drug effects , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Cytokines/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Child , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , MAP Kinase Signaling System/drug effects
7.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581034

ABSTRACT

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Ependymoma , Glioma, Subependymal , Supratentorial Neoplasms , Child , Humans , Brain Neoplasms/genetics , Cell Cycle Proteins , Central Nervous System Neoplasms/genetics , Ependymoma/pathology , In Situ Hybridization, Fluorescence , Supratentorial Neoplasms/pathology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
8.
Nat Commun ; 15(1): 2810, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561347

ABSTRACT

Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Cell Proliferation/genetics , Cell Line, Tumor , Osteosarcoma/metabolism , Bone Neoplasms/metabolism , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic
9.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605332

ABSTRACT

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Subject(s)
Extracellular Vesicles , Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningeal Neoplasms/surgery , Prospective Studies , Liquid Biopsy , Biomarkers , Extracellular Vesicles/pathology
10.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576030

ABSTRACT

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Subject(s)
Epigenomics , Neoplasms , Humans , Unsupervised Machine Learning , Cloud Computing , Neoplasms/diagnosis , Neoplasms/genetics , DNA Methylation
11.
Free Neuropathol ; 52024 Jan.
Article in English | MEDLINE | ID: mdl-38532825

ABSTRACT

The morphological patterns leading to the diagnosis of glioblastoma may also commonly be observed in several other distinct tumor entities, which can result in a mixed bag of tumors subsumed under this diagnosis. The 2021 WHO Classification of CNS Tumors has separated several of these entities from the diagnosis of glioblastoma, IDH-wildtype. This study determines the DNA methylation classes most likely receiving the diagnosis glioblastoma, IDH wildtype according to the definition by the WHO 2021 Classification and provides comparative copy number analyses. We identified 10782 methylome datasets uploaded to the web page www.molecularneuropathology.org with a calibrated score of ≥0.9 by the Heidelberg Brain Tumor Classifier version v12.8. These methylation classes were characterized by the diagnosis glioblastoma being the most frequent classification encountered in each of the classes according to the WHO 2021 definition. Further, methylation classes selected for this study predominantly contained adult patients. Unsupervised clustering confirmed the presence of nine methylation classes containing tumors most likely receiving the diagnosis glioblastoma, IDH-wildtype according to the WHO 2021 definition. Copy number analysis and a focus on genes with typical numerical alterations in glioblastoma revealed clear differences between the nine methylation classes. Although great progress in diagnostic precision has been achieved over the last decade, our data clearly demonstrate that glioblastoma, IDH-wildtype still is a heterogeneous group in need of further stratification.

12.
J Neurooncol ; 167(2): 245-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334907

ABSTRACT

PURPOSE: Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS: Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS: Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION: Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.


Subject(s)
Brain Neoplasms , Glioma , Humans , Reoperation , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/surgery , Precision Medicine , Glioma/genetics , Glioma/surgery , Glioma/pathology
13.
Clin Cancer Res ; 30(14): 2974-2985, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38295147

ABSTRACT

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single-nucleotide variants (SNV), and small insertions/deletions (indel) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), nonmalignant (n = 17), and nondiagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/or cancer-specific alterations in 75.0% (n = 24) of glioblastoma and 52.6% (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26%-48%) and SNVs at predefined gene loci (44%), followed by SNVs/indels identified via uninformed variant calling (8%-14%). A molecular-guided tumor classification was possible for 23.5% (n = 4) of nondiagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma. See related commentary by Abdullah, p. 2860.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA Copy Number Variations , Glioma , High-Throughput Nucleotide Sequencing , Humans , Glioma/genetics , Glioma/cerebrospinal fluid , Glioma/pathology , Glioma/diagnosis , Female , Middle Aged , Male , High-Throughput Nucleotide Sequencing/methods , Aged , Adult , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/cerebrospinal fluid , Cell-Free Nucleic Acids/genetics , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/pathology , Polymorphism, Single Nucleotide , Young Adult , Aged, 80 and over , Brain Neoplasms/genetics , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis
14.
Neuro Oncol ; 26(6): 1042-1051, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38243818

ABSTRACT

BACKGROUND: Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS: We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS: There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS: The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.


Subject(s)
Astrocytoma , Biomarkers, Tumor , Brain Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , DNA Methylation , Isocitrate Dehydrogenase , Mutation , Humans , Astrocytoma/genetics , Astrocytoma/pathology , Astrocytoma/mortality , Isocitrate Dehydrogenase/genetics , Male , Prognosis , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Middle Aged , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Adult , Cyclin-Dependent Kinase Inhibitor p15/genetics , Aged , Survival Rate , Follow-Up Studies , Young Adult , Homozygote , Gene Deletion
15.
Acta Neuropathol ; 147(1): 11, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38183430

ABSTRACT

Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.


Subject(s)
Astrocytoma , Isocitrate Dehydrogenase , Humans , Astrocytoma/genetics , Astrocytoma/therapy , Cohort Studies , Homozygote , Isocitrate Dehydrogenase/genetics , Prognosis , Retrospective Studies , Sequence Deletion
16.
Acta Neuropathol ; 147(1): 22, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38265489

ABSTRACT

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Subject(s)
Ependymoma , Spinal Cord Neoplasms , Adult , Child , Humans , Transcriptome , Gene Expression Profiling , Mutation , Epigenesis, Genetic
17.
J Neurooncol ; 166(2): 359-368, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38253790

ABSTRACT

PURPOSE: To provide a treatment-focused review and develop basic treatment guidelines for patients diagnosed with pineal anlage tumor (PAT). METHODS: Prospectively collected data of three patients with pineal anlage tumor from Germany was combined with clinical details and treatment information from 17 published cases. RESULTS: Overall, 20 cases of PAT were identified (3 not previously reported German cases, 17 cases from published reports). Age at diagnosis ranged from 0.3 to 35.0 (median: 3.2 ± 7.8) years. All but three cases were diagnosed before the age of three years. For three cases, metastatic disease at initial staging was described. All patients underwent tumor surgery (gross-total resection: 9, subtotal resection/biopsy: 9, extent of resection unknown: 2). 15/20 patients were alive at last follow-up. Median follow-up for 10/15 surviving patients with available follow-up and treatment data was 2.4 years (0.3-6.5). Relapse was reported for 3 patients within 0.8 years after diagnosis. Five patients died, 3 after relapse and 2 from early postoperative complications. Two-year-progression-free- and -overall survival were 65.2 ± 12.7% and 49.2 ± 18.2%, respectively. All 4 patients who received intensive chemotherapy including high-dose chemotherapy combined with radiotherapy (2 focal, 2 craniospinal [CSI]) had no recurrence. Focal radiotherapy- and CSI-free survival rates in 13 evaluable patients were 46.2% (6/13) and 61.5% (8/13), respectively. CONCLUSION: PAT is an aggressive disease mostly affecting young children. Therefore, adjuvant therapy using intensive chemotherapy and considering radiotherapy appears to comprise an appropriate treatment strategy. Reporting further cases is crucial to evaluate distinct treatment strategies.


Subject(s)
Brain Neoplasms , Pineal Gland , Pinealoma , Supratentorial Neoplasms , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Young Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Neoplasm Recurrence, Local/pathology , Pineal Gland/surgery , Pineal Gland/pathology , Pinealoma/diagnosis , Pinealoma/surgery , Recurrence , Supratentorial Neoplasms/pathology , Treatment Outcome
18.
Neuro Oncol ; 26(5): 922-932, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38243410

ABSTRACT

BACKGROUND: The aim of this clinical trial was to compare Fluorescein-stained intraoperative confocal laser endomicroscopy (CLE) of intracranial lesions and evaluation by a neuropathologist with routine intraoperative frozen section (FS) assessment by neuropathology. METHODS: In this phase II noninferiority, prospective, multicenter, nonrandomized, off-label clinical trial (EudraCT: 2019-004512-58), patients above the age of 18 years with any intracranial lesion scheduled for elective resection were included. The diagnostic accuracies of both CLE and FS referenced with the final histopathological diagnosis were statistically compared in a noninferiority analysis, representing the primary endpoint. Secondary endpoints included the safety of the technique and time expedited for CLE and FS. RESULTS: A total of 210 patients were included by 3 participating sites between November 2020 and June 2022. Most common entities were high-grade gliomas (37.9%), metastases (24.1%), and meningiomas (22.7%). A total of 6 serious adverse events in 4 (2%) patients were recorded. For the primary endpoint, the diagnostic accuracy for CLE was inferior with 0.87 versus 0.91 for FS, resulting in a difference of 0.04 (95% confidence interval -0.10; 0.02; P = .367). The median time expedited until intraoperative diagnosis was 3 minutes for CLE and 27 minutes for FS, with a mean difference of 27.5 minutes (standard deviation 14.5; P < .001). CONCLUSIONS: CLE allowed for a safe and time-effective intraoperative histological diagnosis with a diagnostic accuracy of 87% across all intracranial entities included. The technique achieved histological assessments in real time with a 10-fold reduction of processing time compared to FS, which may invariably impact surgical strategy on the fly.


Subject(s)
Brain Neoplasms , Fluorescein , Frozen Sections , Microscopy, Confocal , Humans , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Male , Microscopy, Confocal/methods , Female , Middle Aged , Prospective Studies , Frozen Sections/methods , Aged , Adult , Follow-Up Studies , Young Adult , Prognosis , Aged, 80 and over
19.
Neuro Oncol ; 26(4): 701-712, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38079455

ABSTRACT

BACKGROUND: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS: A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS: With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS: Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/radiotherapy , Meningioma/surgery , Meningioma/pathology , Prospective Studies , Carbon/therapeutic use , Ions/therapeutic use , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/surgery , Necrosis/drug therapy , World Health Organization
20.
Histopathology ; 84(4): 683-696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084641

ABSTRACT

AIMS: Ovarian Wilms tumour (WT)/nephroblastoma is an extremely rare neoplasm that has been reported to occur in pure form or as a component of a teratomatous neoplasm. We hypothesized that teratoma-associated and pure ovarian WT may represent different tumour types with diverging molecular backgrounds. To test this hypothesis, we comprehensively characterized a series of five tumours originally diagnosed as ovarian WT. METHODS AND RESULTS: The five cases comprised three teratoma-associated (two mature and one immature) and two pure WTs. Two of the teratoma-associated WTs consisted of small nodular arrangements of "glandular"/epithelial structures, while the third consisted of both an epithelial and a diffuse spindle cell/blastemal component. The pure WTs consisted of "glandular" structures, which were positive for sex cord markers (including inhibin and SF1) together with a rhabdomyosarcomatous component. The two pure WTs harboured DICER1 pathogenic variants (PVs), while the three associated with teratomas were DICER1 wildtype. Panel-based DNA sequencing of four of the cases did not identify PVs in the other genes investigated. Analysis of the HA19/IGF2 imprinting region showed retention of imprinting in the pure WTs but loss of heterozygosity with hypomethylation of the ICR1 region in two of three teratoma-associated WTs. Furthermore, copy number variation and clustering-based whole-genome DNA methylation analyses identified divergent molecular profiles for pure and teratoma-associated WTs. CONCLUSION: Based on the morphological features, immunophenotype, and molecular findings (DICER1 PVs, copy number, and DNA methylation profiles), we suggest that the two cases diagnosed as pure primary ovarian WT represent moderately to poorly differentiated Sertoli Leydig cell tumours (SLCTs), while the tumours arising in teratomas represent true WTs. It is possible that at least some prior cases reported as pure primary ovarian WT represent SLCTs.


Subject(s)
Kidney Neoplasms , Ovarian Neoplasms , Sex Cord-Gonadal Stromal Tumors , Teratoma , Wilms Tumor , Male , Female , Humans , DNA Copy Number Variations , Wilms Tumor/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Teratoma/genetics , Teratoma/pathology , Kidney Neoplasms/genetics , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...