Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33573376

ABSTRACT

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Spiro Compounds/pharmacology , Animals , Anopheles/drug effects , Antimalarials/chemical synthesis , Antimalarials/metabolism , Female , Germ Cells/drug effects , High-Throughput Screening Assays , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Structure-Activity Relationship
2.
PLoS Negl Trop Dis ; 13(8): e0007636, 2019 08.
Article in English | MEDLINE | ID: mdl-31381563

ABSTRACT

Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4-6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3-4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Filarioidea/microbiology , Microfilariae/microbiology , Wolbachia/drug effects , Wolbachia/physiology , Animals , Doxycycline/pharmacology , Female , Filariasis , Filarioidea/drug effects , Gerbillinae , Kinetics , Mice , Mice, Inbred BALB C , Microfilariae/drug effects , Microfilariae/embryology , Models, Animal
3.
Sci Transl Med ; 11(483)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867321

ABSTRACT

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Subject(s)
Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Macrolides/administration & dosage , Macrolides/therapeutic use , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Wolbachia/physiology , Administration, Oral , Animals , Disease Models, Animal , Elephantiasis, Filarial/blood , Female , Macrolides/adverse effects , Male , Mice, Inbred BALB C , Mice, SCID , Onchocerciasis/blood , Treatment Outcome , Tylosin/blood , Tylosin/chemical synthesis , Tylosin/chemistry , Tylosin/therapeutic use
4.
PLoS Negl Trop Dis ; 13(2): e0007159, 2019 02.
Article in English | MEDLINE | ID: mdl-30818326

ABSTRACT

There is a significant need for improved treatments for onchocerciasis and lymphatic filariasis, diseases caused by filarial worm infection. In particular, an agent able to selectively kill adult worms (macrofilaricide) would be expected to substantially augment the benefits of mass drug administration (MDA) with current microfilaricides, and to provide a solution to treatment of onchocerciasis / loiasis co-infection, where MDA is restricted. We have identified a novel macrofilaricidal agent, Tylosin A (TylA), which acts by targeting the worm-symbiont Wolbachia bacterium. Chemical modification of TylA leads to improvements in anti-Wolbachia activity and oral pharmacokinetic properties; an optimized analog (ABBV-4083) has been selected for clinical evaluation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Filaricides/pharmacology , Tylosin/analogs & derivatives , Tylosin/pharmacology , Wolbachia/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Elephantiasis, Filarial/drug therapy , Female , Filaricides/pharmacokinetics , Filarioidea/drug effects , Filarioidea/microbiology , Gerbillinae , Mice , Mice, Inbred BALB C , Onchocerciasis/drug therapy , Symbiosis/drug effects
5.
J Med Chem ; 56(24): 10158-70, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24304150

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is an increasing threat to global health. Available medicines were introduced over 40 years ago, have undesirable side effects, and give equivocal results of cure in the chronic stage of the disease. We report the development of two compounds, 6 and (S)-7, with PCR-confirmed curative activity in a mouse model of established T. cruzi infection after once daily oral dosing for 20 days at 20 mg/kg 6 and 10 mg/kg (S)-7. Compounds 6 and (S)-7 have potent in vitro activity, are noncytotoxic, show no adverse effects in vivo following repeat dosing, are prepared by a short synthetic route, and have druglike properties suitable for preclinical development.


Subject(s)
Chagas Disease/drug therapy , Pyrimidines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/parasitology , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Parasitic Sensitivity Tests , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/chemistry
6.
Future Med Chem ; 5(15): 1733-52, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24144410

ABSTRACT

BACKGROUND: Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. RESULTS: We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. CONCLUSION: High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Cell Line , Cell Survival/drug effects , Chagas Disease/drug therapy , Chagas Disease/mortality , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Disease Models, Animal , High-Throughput Screening Assays , Humans , Mice , Parasitic Sensitivity Tests , Rats , Structure-Activity Relationship , Survival Rate , Time Factors , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use
7.
Bioorg Med Chem ; 21(7): 1756-63, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23462713

ABSTRACT

A scaffold hopping exercise undertaken to expand the structural diversity of the fenarimol series of anti-Trypanosoma cruzi (T. cruzi) compounds led to preparation of simple 1-[phenyl(pyridin-3-yl)methyl]piperazinyl analogues of fenarimol which were investigated for their ability to inhibit T. cruzi in vitro in a whole organism assay. A range of compounds bearing amide, sulfonamide, carbamate/carbonate and aryl moieties exhibited low nM activities and two analogues were further studied for in vivo efficacy in a mouse model of T. cruzi infection. One compound, the citrate salt of 37, was efficacious in a mouse model of acute T. cruzi infection after once daily oral dosing at 20, 50 and 100 mg/kg for 5 days.


Subject(s)
Chagas Disease/drug therapy , Piperazines/chemistry , Piperazines/therapeutic use , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Chagas Disease/parasitology , Drug Design , Humans , Mice , Piperazine , Piperazines/administration & dosage , Piperazines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/pharmacology
8.
J Med Chem ; 55(9): 4189-204, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22536986

ABSTRACT

We report the discovery of nontoxic fungicide fenarimol (1) as an inhibitor of Trypanosoma cruzi ( T. cruzi ), the causative agent of Chagas disease, and the results of structure-activity investigations leading to potent analogues with low nM IC(50)s in a T. cruzi whole cell in vitro assay. Lead compounds suppressed blood parasitemia to virtually undetectable levels after once daily oral dosing in mouse models of T. cruzi infection. Compounds are chemically tractable, allowing rapid optimization of target biological activity and drug characteristics. Chemical and biological studies undertaken in the development of the fenarimol series toward the goal of delivering a new drug candidate for Chagas disease are reported.


Subject(s)
Chagas Disease/drug therapy , Pyrimidines/chemistry , Pyrimidines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Chagas Disease/metabolism , Chagas Disease/parasitology , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Inhibitory Concentration 50 , Male , Mice , Nuclear Magnetic Resonance, Biomolecular , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics
9.
J Med Chem ; 50(8): 1983-7, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17367123

ABSTRACT

Dipeptidyl peptidase IV (DPP4) inhibitors are emerging as a new class of therapeutic agents for the treatment of type 2 diabetes. They exert their beneficial effects by increasing the levels of active glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are two important incretins for glucose homeostasis. Starting from a high-throughput screening hit, we were able to identify a series of piperidinone- and piperidine-constrained phenethylamines as novel DPP4 inhibitors. Optimized compounds are potent, selective, and have good pharmacokinetic profiles.


Subject(s)
Adenosine Deaminase Inhibitors , Dipeptidyl-Peptidase IV Inhibitors , Glycoproteins/antagonists & inhibitors , Phenethylamines/chemical synthesis , Piperidines/chemical synthesis , Animals , Biological Availability , Crystallography, X-Ray , Dipeptidyl Peptidase 4 , Humans , Molecular Conformation , Phenethylamines/pharmacokinetics , Phenethylamines/pharmacology , Piperidines/pharmacokinetics , Piperidines/pharmacology , Piperidones/chemical synthesis , Piperidones/pharmacokinetics , Piperidones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
10.
Metabolism ; 56(3): 380-7, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17292727

ABSTRACT

It is unclear how hepatic glucocorticoid receptor (GR) function and hypothalamic-pituitary-adrenal axis tone contribute to the diabetic state and in particular whole-body glucose fluxes. We have previously demonstrated that long-term exposure to hepatic GR inhibition lowers glucose levels in ob/ob mice (J Pharmacol Exp Ther 2005;314:191). The purpose of this study was to determine the effects of a novel GR antagonist (A-348441) on whole-body glucose fluxes in a model of insulin resistance, the Zucker fatty (fa/fa) rat. After an overnight fast, euglycemic-hyperinsulinemic clamp studies were performed 2 hours after single oral dosing as follows: (1) A-348441 at 100 mg/kg or (2) vehicle. Furthermore, effects of 1 week of treatment with either vehicle or A-348441 (3, 10, 30, or 100 mg/kg PO, once per day) were investigated in separate groups of rats fasted overnight and given a final dose of their respective compound, followed 2 hours later by a euglycemic-hyperinsulinemic clamp. One week after catheter implantation, body weight returned to presurgery levels, with no difference between groups. A single, 100-mg/kg dose of A-348441 significantly increased glucose infusion rate 4-fold (P < .05) and reduced endogenous glucose production by 37% (P < .05) but did not change glucose disposal. After 1 week of sub-long-term dosing, fasting glucose levels were reduced dose-dependently with A-348441 vs vehicle (-8%, not significant; -14%, -20%, and -25%, P < .05, at 3, 10, 30, and 100 mg/kg, respectively) with no observed hypoglycemia or change in fasting insulin levels. A-348441 increased the glucose infusion rates after 1-week treatment by 1.3-, 5.7-, 7.3-, and 6.4-fold (P < .05). Endogenous glucose production was decreased (-25%, -44%, -50%, and -61%, P < .05), whereas glucose disposal was increased (29% and 13%, not significant; 23% and 34%, P < .05), with A-348441. In summary, single-dose treatment with the liver-selective GR antagonist A-348441 decreases glucose production with no effect on glucose disposal or fasting glucose levels. After 1 week of treatment with A-348441, (1) there was no effect on body weight, (2) fasting glucose levels decreased, (3) both glucose disposal and glucose infusion rate increased during clamping, and (4) endogenous glucose production was greatly reduced. In addition, hepatic glucose production was highly correlated with fasting glucose levels (r = 0.97). In conclusion, these results indicate that A-348441 increases insulin sensitivity at both the liver and peripheral tissues, leading toward a normalization of the insulin resistant state. Furthermore, with 1-week vs single-dose liver-selective glucocorticoid antagonism, we have determined that the peripheral effect is secondary to the primary event of reduced hepatic glucose production. The approach of inhibiting the hepatic GR may be an advantageous treatment paradigm for individuals with type 2 diabetes mellitus.


Subject(s)
Cholic Acids/pharmacology , Estrone/analogs & derivatives , Glucose/metabolism , Insulin Resistance , Liver/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Animals , Blood Glucose/analysis , Dose-Response Relationship, Drug , Estrone/pharmacology , Insulin/blood , Rats , Rats, Zucker
11.
Bioorg Med Chem Lett ; 17(7): 2005-12, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17276063

ABSTRACT

A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.


Subject(s)
Chemistry, Pharmaceutical/methods , Dipeptidyl-Peptidase IV Inhibitors , Enzyme Inhibitors/chemical synthesis , Phenethylamines/chemical synthesis , Pyrrolidines/chemical synthesis , Animals , Blood Glucose/metabolism , Cyclohexenes/chemistry , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Enzyme Inhibitors/chemistry , Female , Hypoglycemic Agents/pharmacology , Models, Chemical , Molecular Conformation , Phenethylamines/chemistry , Pyrrolidines/chemistry , Rats
12.
Bioorg Med Chem Lett ; 17(1): 40-4, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17070047

ABSTRACT

Libraries of mifepristone analogs, MP-Acids, were designed and synthesized to increase the chances of identifying GR antagonists that possess liver-selective pharmacological profiles. MP-Acids were uniformly potent GR antagonists in binding and in cell-based functional assays. A high throughput pharmacokinetic selection strategy that employs the cassette dosing of MP-Acids was developed to identify liver-targeting compounds. Thus, resource-intensive in vivo assays to measure liver-selective pharmacology were enriched with GR antagonists that achieve high concentrations in the liver.


Subject(s)
Glucocorticoids/chemistry , Glucocorticoids/pharmacokinetics , Liver/metabolism , Mifepristone/analogs & derivatives , Receptors, Glucocorticoid/antagonists & inhibitors , Animals , Glucocorticoids/chemical synthesis , Rats , Rats, Inbred Strains
13.
J Med Chem ; 49(22): 6439-42, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064063

ABSTRACT

Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.


Subject(s)
Biphenyl Compounds/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Hypoglycemic Agents/pharmacology , Serine Proteinase Inhibitors/pharmacology , Triazoles/pharmacology , Animals , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Cyclohexenes/chemistry , Diabetes Mellitus, Type 2/genetics , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Models, Molecular , Rats , Rats, Zucker , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , X-Ray Diffraction
14.
Bioorg Med Chem Lett ; 16(24): 6226-30, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17010607

ABSTRACT

A series of xanthine mimetics containing 5,5 and 5,6 heterocycle fused imidazoles were synthesized as dipeptidyl peptidase IV inhibitors. Compound 7 is potent (h-DPPIV K(i)=2nM) and exhibits excellent selectivity and no species specificity against rat and human enzymes. The X-ray structure confirms that the binding mode of 7 to rat DPPIV is similar to the parent xanthines.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Protease Inhibitors/pharmacology , Xanthines/pharmacology , Animals , Dipeptidyl Peptidase 4/chemistry , Imidazoles/pharmacology , Kinetics , Models, Molecular , Protease Inhibitors/chemical synthesis , Protein Conformation , Rats , Structure-Activity Relationship , X-Ray Diffraction , Xanthines/chemical synthesis
15.
J Med Chem ; 49(21): 6416-20, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034148

ABSTRACT

Dipeptidyl peptidase-IV (DPP-IV) inhibitors are poised to be the next major drug class for the treatment of type 2 diabetes. Structure-activity studies of substitutions at the C5 position of the 2-cyanopyrrolidide warhead led to the discovery of potent inhibitors of DPP-IV that lack activity against DPP8 and DPP9. Further modification led to an extremely potent (Ki(DPP)(-)(IV) = 1.0 nM) and selective (Ki(DPP8) > 30 microM; Ki(DPP9) > 30 microM) clinical candidate, ABT-279, that is orally available, efficacious, and remarkably safe in preclinical safety studies.


Subject(s)
Adenosine Deaminase Inhibitors , Dipeptidyl-Peptidase IV Inhibitors , Glycoproteins/antagonists & inhibitors , Hypoglycemic Agents/chemical synthesis , Pyridines/chemical synthesis , Pyrrolidines/chemical synthesis , Adenosine Deaminase/chemistry , Administration, Oral , Animals , Binding Sites , Caco-2 Cells , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/chemistry , Dogs , Female , Glucose Intolerance/drug therapy , Glycoproteins/chemistry , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Macaca fascicularis , Models, Molecular , Molecular Structure , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship
17.
J Med Chem ; 49(12): 3520-35, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759095

ABSTRACT

A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Dipeptidyl Peptidase 4/metabolism , Hypoglycemic Agents/chemical synthesis , Nitriles/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrrolidines/chemical synthesis , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Blood Glucose/analysis , Catalytic Domain , Crystallography, X-Ray , Drug Stability , Glucose Tolerance Test , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Models, Molecular , Nitriles/pharmacokinetics , Nitriles/pharmacology , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship
18.
Biochemistry ; 45(24): 7474-82, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16768443

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.


Subject(s)
Dipeptidases/antagonists & inhibitors , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Kidney/enzymology , Animals , Binding Sites , Crystallization , Dimerization , Dipeptidases/chemistry , Dipeptidases/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/isolation & purification , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Humans , Kinetics , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tyrosine/chemistry , X-Ray Diffraction
19.
Bioorg Med Chem Lett ; 16(7): 1807-10, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16446092

ABSTRACT

A series of novel benzoxazole benzenesulfonamides was synthesized as inhibitors of fructose-1,6-bisphosphatase (FBPase-1). Extensive SAR studies led to a potent inhibitor, 53, with an IC(50) of 0.57microM. Compound 17 exhibited excellent bioavailability and a good pharmacokinetic profile in rats.


Subject(s)
Enzyme Inhibitors/pharmacology , Fructose-Bisphosphatase/antagonists & inhibitors , Sulfonamides/pharmacology , Allosteric Regulation , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Models, Molecular , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
20.
Bioorg Med Chem Lett ; 16(7): 1811-5, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16442285

ABSTRACT

We have identified benzoxazole benzenesulfonamide 1 as a novel allosteric inhibitor of fructose-1,6-bisphosphatase (FBPase-1). X-ray crystallographic and biological studies of 1 indicate a distinct binding mode that recapitulates features of several previously reported FBPase-1 inhibitor classes.


Subject(s)
Benzoxazoles/chemistry , Enzyme Inhibitors/pharmacology , Fructose-Bisphosphatase/antagonists & inhibitors , Sulfonamides/pharmacology , Allosteric Regulation , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fructose-Bisphosphatase/metabolism , Models, Molecular , Protein Binding , Sulfonamides/chemistry , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...