Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(10): e11237, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36339987

ABSTRACT

Urbanization and population growth demand the construction of structures to facilitate the need for space, and old infrastructures must make space for new ones leading to demolition and concrete debris. In addition to demolition, aging and weather are factors leading to concrete deterioration and, thus, a new challenge as an environmental pollutant. Studies on how concrete debris and leachate affect biota in the environment are limited. The present study aimed to understand the effects of leachate from various sizes of concrete debris on the three oligochaete species Enchytraeus crypticus, Tubifex, and Lumbriculus variegatus. Acute toxicity testing was carried out to determine the adverse effects over time. The oligochaetes' survival was monitored as well as the activity of the biotransformation enzyme glutathione S-transferase and the antioxidative enzyme catalase as indicators of the oxidative stress status. Leachate from the smallest concrete particle size (<1 mm) was found to be the most toxic as it caused, on average, 6-fold increased oligochaete mortality compared to the larger pieces (2-5 cm) after 96 h of exposure, potentially due to the larger surface area facilitating the release of toxicants. Substrate buffered the toxic effect of the leachate with 42 ± 12% fewer mortalities and reduced adverse effects on the enzymes. Of the three oligochaetes, E. crypticus was the most resilient to the concrete leachate. The study is the first to investigate the effects of concrete leachate on oligochaetes.

3.
Materials (Basel) ; 14(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430017

ABSTRACT

In order to determine the potential environmental impact of construction products, it is necessary to evaluate their influence on organisms exposed to them or their eluates under environmental conditions. The behavior of the white worm Enchytraeus albidus is a useful tool for assessing the potential environmental impact of construction products in contact with water and soil. This study investigates the environmental effects of eluates from two construction products, a reactive waterproofing product, and an injection resin, on the reproduction and avoidance behavior of E. albidus. The eluates were prepared according to existing guidelines. The soil used for the tests was moistened with the eluates of the construction products. The reproduction results of the worms were collected after six weeks of exposure. Offsprings were counted under the microscope and statistically analyzed. Results from the avoidance behavior were collected after 48 h of exposure, and results were compared with the reproduction results. The eluates from both construction products induced significant changes in the reproduction behavior of E. albidus. Undiluted or only slightly diluted eluates of the injection resin drastically reduced the reproduction of the worms, whereas the leaches of the reactive waterproofing product only had a minor effect. The avoidance results for the injection resin indicates that its presence in the habitat is clearly detrimental to the survival of E. albidus, while the avoidance results for the waterproofing resin showed an initial avoidance of the eluates, but no harmful effects were observed. The avoidance test is a way of rapid toxicity screening of environmental samples when time is a critical parameter to measure possible environmental effects. This study shows that ecotoxicological tests using Enchytraeids are a valuable and important tool for understanding the mode of action of eluates from construction products in the environment.

4.
J Sep Sci ; 34(4): 436-45, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21298783

ABSTRACT

This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography-mass spectrometry (GC-MS) associated with solid-phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane-divinylbenzene (PDMS-DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 µg/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.


Subject(s)
Drug Residues/analysis , Drug Residues/isolation & purification , Sewage/analysis , Solid Phase Microextraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Gas Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...