Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927587

ABSTRACT

Landscapes are consistently under pressure from human-induced ecological change, often resulting in shifting species distributions. For some species, changing the geographical breadth of their niche space results in matching range shifts to regions other than those in which they are formally found. In this study, we employ a population genomics approach to assess potential conservation issues arising from purported range expansions into the south Texas Brush Country of two sister species of ducks: mottled (Anas fulvigula) and Mexican (Anas diazi) ducks. Specifically, despite being non-migratory, both species are increasingly being recorded outside their formal ranges, with the northeastward and westward expansions of Mexican and mottled ducks, respectively, perhaps resulting in secondary contact today. We assessed genetic ancestry using thousands of autosomal loci across the ranges of both species, as well as sampled Mexican- and mottled-like ducks from across overlapping regions of south Texas. First, we confirm that both species are indeed expanding their ranges, with genetically pure Western Gulf Coast mottled ducks confirmed as far west as La Salle county, Texas, while Mexican ducks recorded across Texas counties near the USA-Mexico border. Importantly, the first confirmed Mexican × mottled duck hybrids were found in between these regions, which likely represents a recently established contact zone that is, on average, ~100 km wide. We posit that climate- and land use-associated changes, including coastal habitat degradation coupled with increases in artificial habitats in the interior regions of Texas, are facilitating these range expansions. Consequently, continued monitoring of this recent contact event can serve to understand species' responses in the Anthropocene, but it can also be used to revise operational survey areas for mottled ducks.


Subject(s)
Ducks , Hybridization, Genetic , Animals , Ducks/genetics , Texas , Humans , Mexico
2.
Sci Rep ; 13(1): 2132, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746981

ABSTRACT

Quantifying relationships between animal behavior and habitat use is essential to understanding animal decision-making. High-resolution location and acceleration data allows unprecedented insights into animal movement and behavior. These data types allow researchers to study the complex linkages between behavioral plasticity and habitat distribution. We used a novel Markov model in a Bayesian framework to quantify the influence of behavioral state frequencies and environmental variables on transitions among landcover types through joint use of location and tri-axial accelerometer data. Data were collected from 56 greater white-fronted geese (Anser albifrons frontalis) across seven ecologically distinct winter regions over two years in midcontinent North America. We showed that goose decision-making varied across landcover types, ecoregions, and abiotic conditions, and was influenced by behavior. We found that time spent in specific behaviors explained variation in the probability of transitioning among habitats, revealing unique behavioral responses from geese among different habitats. Combining GPS and acceleration data allowed unique study of potential influences of an ongoing large-scale range shift in the wintering distribution of a migratory bird across midcontinent North America. We anticipate that behavioral adaptations among variable landscapes is a likely mechanism explaining goose use of highly variable ecosystems during winter in ways which optimize their persistence.


Subject(s)
Ecosystem , Influenza in Birds , Animals , Bayes Theorem , Geese/physiology , Seasons
3.
Oecologia ; 201(2): 369-383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36576527

ABSTRACT

Arctic-nesting geese face energetic challenges during spring migration, including ecological barriers and weather conditions (e.g., precipitation and temperature), which in long-lived species can lead to a trade-off to defer reproduction in favor of greater survival. We used GPS location and acceleration data collected from 35 greater white-fronted geese of the North American midcontinent and Greenland populations at spring migration stopovers, and novel applications of Bayesian dynamic linear models to test daily effects of minimum temperature and precipitation on energy expenditure (i.e., overall dynamic body acceleration, ODBA) and proportion of time spent feeding (PTF), then examined the daily and additive importance of ODBA and PTF on probability of breeding deferral using stochastic antecedent models. We expected distinct responses in behavior and probability of breeding deferral between and within populations due to differences in stopover area availability. Time-varying coefficients of weather conditions were variable between ODBA and PTF, and often did not show consistent patterns among birds, indicating plasticity in how individuals respond to conditions. An increase in antecedent ODBA was associated with a slightly increased probability of deferral in midcontinent geese but not Greenland geese. Probability of deferral decreased with increased PTF in both populations. We did not detect any differentially important time periods. These results suggest either that movements and behavior throughout spring migration do not explain breeding deferral or that ecological linkages between bird decisions during spring and subsequent breeding deferral were different between populations and across migration but occurred at different time scales than those we examined.


Subject(s)
Animal Migration , Geese , Humans , Animals , Geese/physiology , Bayes Theorem , Animal Migration/physiology , Seasons , Temperature , Breeding , Probability
4.
Mov Ecol ; 9(1): 2, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33472671

ABSTRACT

BACKGROUND: Animal movement patterns are the result of both environmental and physiological effects, and the rates of movement and energy expenditure of given movement strategies are influenced by the physical environment an animal inhabits. Greater white-fronted geese in North America winter in ecologically distinct regions and have undergone a large-scale shift in wintering distribution over the past 20 years. White-fronts continue to winter in historical wintering areas in addition to contemporary areas, but the rates of movement among regions, and energetic consequences of those decisions, are unknown. Additionally, linkages between wintering and breeding regions are generally unknown, and may influence within-winter movement rates. METHODS: We used Global Positioning System and acceleration data from 97 white-fronts during two winters to elucidate movement characteristics, model regional transition probabilities using a multistate model in a Bayesian framework, estimate regional energy expenditure, and determine behavior time-allocation influences on energy expenditure using overall dynamic body acceleration and linear mixed-effects models. We assess the linkages between wintering and breeding regions by evaluating the winter distributions for each breeding region. RESULTS: White-fronts exhibited greater daily movement early in the winter period, and decreased movements as winter progressed. Transition probabilities were greatest towards contemporary winter regions and away from historical wintering regions. Energy expenditure was up to 55% greater, and white-fronts spent more time feeding and flying, in contemporary wintering regions compared to historical regions. White-fronts subsequently summered across their entire previously known breeding distribution, indicating substantial mixing of individuals of varying breeding provenance during winter. CONCLUSIONS: White-fronts revealed extreme plasticity in their wintering strategy, including high immigration probability to contemporary wintering regions, high emigration from historical wintering regions, and high regional fidelity to western regions, but frequent movements among eastern regions. Given that movements of white-fronts trended toward contemporary wintering regions, we anticipate that a wintering distribution shift eastward will continue. Unexpectedly, greater energy expenditure in contemporary wintering regions revealed variable energetic consequences of choice in wintering region and shifting distribution. Because geese spent more time feeding in contemporary regions than historical regions, increased energy expenditure is likely balanced by increased energy acquisition in contemporary wintering areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...