Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786096

ABSTRACT

Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR Gpr126 (Adgrg6) is widely expressed in developing kidneys. In adulthood, Gpr126 expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium. Whether Gpr126 plays a role in kidney disease remains unclear. Here, we characterized Gpr126 expression in diseased kidneys in mice, rats, and humans. RT-PCR data show that Gpr126 expression is altered in kidney disease. A quantitative RNAscope® analysis utilizing cell type-specific markers revealed that Gpr126 expression upon tubular damage is mainly increased in cell types expressing Gpr126 under healthy conditions as well as in cells of the distal and proximal tubules. Upon glomerular damage, an increase was mainly detected in PECs. Notably, Gpr126 expression was upregulated in an ischemia/reperfusion model within hours, while upregulation in a glomerular damage model was only detected after weeks. An analysis of kidney microarray data from patients with lupus nephritis, IgA nephropathy, focal segmental glomerulosclerosis (FSGS), hypertension, and diabetes as well as single-cell RNA-seq data from kidneys of patients with acute kidney injury and chronic kidney disease indicates that GPR126 expression is also altered in human kidney disease. In patients with FSGS, an RNAscope® analysis showed that GPR126 mRNA is upregulated in PECs belonging to FSGS lesions and proximal tubules. Collectively, we provide detailed insights into Gpr126 expression in kidney disease, indicating that GPR126 is a potential therapeutic target.


Subject(s)
Kidney , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Humans , Rats , Mice , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/genetics , Kidney Diseases/pathology , Male , Gene Expression Profiling , Mice, Inbred C57BL , Female
2.
BioDrugs ; 37(1): 5-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512315

ABSTRACT

Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by non-infectious stimuli, then targeting the organism's own cells and leading to inflammatory tissue damage that exacerbates injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and potential therapeutic approaches.


Subject(s)
Kidney Transplantation , Reperfusion Injury , Humans , Graft Rejection/prevention & control , Complement System Proteins/physiology
3.
Front Med (Lausanne) ; 9: 793744, 2022.
Article in English | MEDLINE | ID: mdl-35433772

ABSTRACT

Zero-time biopsies are taken to determine the quality of the donor organ at the time of transplantation. Histological analyses alone have so far not been able to identify parameters that allow the prediction of subsequent rejection episodes or graft survival. This study investigated whether gene expression analyses of zero-time biopsies might support this prediction. Using a well-characterized cohort of 26 zero-time biopsies from renal transplant patients that include 4 living donor (LD) and 22 deceased donor (DD) biopsies that later developed no rejection (Ctrl, n = 7), delayed graft function (DGF, n = 4), cellular (T-cell mediated rejection; TCMR, n = 8), or antibody-mediated rejection (ABMR, n = 7), we analyzed gene expression profiles for different types of subsequent renal transplant complication. To this end, RNA was isolated from formalin-fixed, paraffin-embedded (FFPE) sections and gene expression profiles were quantified. Results were correlated with transplant data and B-cell, and plasma cell infiltration was assessed by immunofluorescence microscopy. Both principal component analysis and clustering analysis of gene expression data revealed marked separation between LDs and DDs. Differential expression analysis identified 185 significant differentially expressed genes (adjusted p < 0.05). The expression of 68% of these genes significantly correlated with cold ischemia time (CIT). Furthermore, immunoglobulins were differentially expressed in zero-time biopsies from transplants later developing rejection (TCMR + ABMR) compared to non-rejected (Ctrl + DGF) transplants. In addition, immunoglobulin expression did not correlate with CIT but was increased in transplants with previous acute renal failure (ARF). In conclusion, gene expression profiles in zero-time biopsies derived from LDs are markedly different from those of DDs. Pre-transplant ARF increased immunoglobulin expression, which might be involved in triggering later rejection events. However, these findings must be confirmed in larger cohorts and the role of early immunoglobulin upregulation in zero-biopsies needs further clarification.

4.
Sci Rep ; 11(1): 15464, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326417

ABSTRACT

In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.


Subject(s)
Complement System Proteins/immunology , Graft Rejection , Kidney Transplantation/methods , T-Lymphocytes/cytology , Adult , Aged , Allografts , Biomarkers/metabolism , Biopsy , Body Mass Index , Delayed Graft Function , Female , Gene Expression Profiling , Humans , Inflammation , Kidney/metabolism , Kidney/pathology , Male , Middle Aged , Principal Component Analysis , RNA, Messenger/metabolism , Up-Regulation
5.
Front Med (Lausanne) ; 8: 656840, 2021.
Article in English | MEDLINE | ID: mdl-33889588

ABSTRACT

The quality of a renal transplant can influence the clinical course after transplantation. Glomerular immune reactivity in renal transplants has previously been described, focusing particularly on IgA, and has been shown to disappear in most cases without affecting the outcome. Here, we describe a cohort of time zero biopsies with regard to glomerular immune reactivity and implications for histomorphology and follow-up. 204 Time zero biopsies were analyzed by immunohistochemistry for glomerular immune reactivity. Time zero and 1-year biopsies were evaluated for histomorphological changes, which, together with clinical and follow-up data, were assessed for associations with glomerular immune profiles. Nearly half of the analyzed time zero biopsies showed glomerular immune reactivity with mesangial C3 being the most common (32.9%), followed by IgA (13.7%) and fullhouse patterns (6.9%). Strong C3 deposits (C3high) were only observed in deceased transplants. In the majority of cases immune reactivity was undetectable in follow-up biopsies and had no adverse effect on transplant function in follow-up of 5 years. In kidney pairs transplanted to different recipients a strong concordance of immune profiles in both kidneys was observed. Moreover, an association of male donor sex and deceased donor transplantation with the presence of immune reactivity was observed. In conclusion, glomerular immune reactivity is a very frequent finding in time zero biopsies, which seems to be determined by donor parameters including male sex and deceased donor transplants. It had no adverse impact on transplant function in 5-year follow-up. Glomerular immune reactivity in time zero biopsies, therefore, does not appear to indicate an inferior quality of the transplant.

6.
J Nephrol ; 33(6): 1369-1372, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32892322

ABSTRACT

SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic.


Subject(s)
COVID-19/complications , Kidney Glomerulus/pathology , Nephrologists/standards , Nephrotic Syndrome/etiology , Adult , Biopsy , COVID-19/epidemiology , Humans , Male , Nephrotic Syndrome/diagnosis , Pandemics , Recurrence
7.
Am J Transplant ; 20(11): 3216-3220, 2020 11.
Article in English | MEDLINE | ID: mdl-32713123

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) preferentially affects epithelia of the upper and lower respiratory tract. Thus, impairment of kidney function has been primarily attributed until now to secondary effects such as cytokine release or fluid balance disturbances. We provide evidence that SARS-CoV-2 can directly infiltrate a kidney allograft. A 69-year-old male, who underwent pancreas-kidney transplantation 13 years previously, presented to our hospital with coronavirus disease 2019 (COVID-19) pneumonia and impaired pancreas and kidney allograft function. Kidney biopsy was performed showing tubular damage and an interstitial mononuclear cell infiltrate. Reverse transcriptase polymerase chain reaction from the biopsy specimen was positive for SARS-CoV-2. In-situ hybridization revealed SARS-CoV-2 RNA in tubular cells and the interstitium. Subsequently, he had 2 convulsive seizures. Magnetic resonance tomography suggested meningoencephalitis, which was confirmed by SARS-CoV-2 RNA transcripts in the cerebrospinal fluid. The patient had COVID-19 pneumonia, meningoencephalitis, and nephritis. SARS-CoV-2 binds to its target cells through angiotensin-converting enzyme 2, which is expressed in a broad variety of tissues including the lung, brain, and kidney. SARS-CoV-2 thereby shares features with other human coronaviruses including SARS-CoV that were identified as pathogens beyond the respiratory tract as well. The present case should provide awareness that extrapulmonary symptoms in COVID-19 may be attributable to viral infiltration of diverse organs.


Subject(s)
COVID-19/epidemiology , Kidney Transplantation/adverse effects , Meningoencephalitis/epidemiology , Pancreas Transplantation/adverse effects , Postoperative Complications , RNA, Viral/genetics , SARS-CoV-2/genetics , Aged , Comorbidity , Humans , Male , Meningoencephalitis/diagnosis , Pandemics , Transplant Recipients , Transplantation, Homologous
8.
Front Bioeng Biotechnol ; 8: 604123, 2020.
Article in English | MEDLINE | ID: mdl-33425870

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) exert beneficial effects during wound healing, and cell-seeded scaffolds are a promising method of application. Here, we compared the suitability of a clinically used collagen/elastin scaffold (Matriderm) with an electrospun Poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffold as carriers for human amnion-derived MSCs (hAMSCs). We created an epidermal-like PCL/PLA scaffold and evaluated its microstructural, mechanical, and functional properties. Sequential spinning of different PCL/PLA concentrations resulted in a wide-meshed layer designed for cell-seeding and a dense-meshed layer for apical protection. The Matriderm and PCL/PLA scaffolds then were seeded with hAMSCs, with or without Matrigel coating. The quantity and quality of the adherent cells were evaluated in vitro. The results showed that hAMSCs adhered to and infiltrated both scaffold types but on day 3, more cells were observed on PCL/PLA than on Matriderm. Apoptosis and proliferation rates were similar for all carriers except the coated Matriderm, where apoptotic cells were significantly enhanced. On day 8, the number of cells decreased on all carrier types except the coated Matriderm, which had consistently low cell numbers. Uncoated Matriderm had the highest percentage of proliferative cells and lowest apoptosis rate of all carrier types. Each carrier also was topically applied to skin wound sites in a mouse model and analyzed in vivo over 14 days via optical imaging and histological methods, which showed detectable hAMSCs on all carrier types on day 8. On day 14, all wounds exhibited newly formed epidermis, and all carriers were well-integrated into the underlying dermis and showing signs of degradation. However, only wounds treated with uncoated PCL/PLA maintained a round appearance with minimal contraction. Overall, the results support a 3-day in vitro culture of scaffolds with hAMSCs before wound application. The PCL/PLA scaffold showed higher cell adherence than Matriderm, and the effect of the Matrigel coating was negligible, as all carrier types maintained sufficient numbers of transplanted cells in the wound area. The anti-contractive effects of the PCL/PLA scaffold offer potential new therapeutic approaches to wound care.

9.
Front Immunol ; 11: 594849, 2020.
Article in English | MEDLINE | ID: mdl-33584662

ABSTRACT

Most patients who became critically ill following infection with COVID-19 develop severe acute respiratory syndrome (SARS) attributed to a maladaptive or inadequate immune response. The complement system is an important component of the innate immune system that is involved in the opsonization of viruses but also in triggering further immune cell responses. Complement activation was seen in plasma adsorber material that clogged during the treatment of critically ill patients with COVID-19. Apart from the lung, the kidney is the second most common organ affected by COVID-19. Using immunohistochemistry for complement factors C1q, MASP-2, C3c, C3d, C4d, and C5b-9 we investigated the involvement of the complement system in six kidney biopsies with acute kidney failure in different clinical settings and three kidneys from autopsy material of patients with COVID-19. Renal tissue was analyzed for signs of renal injury by detection of thrombus formation using CD61, endothelial cell rarefaction using the marker E-26 transformation specific-related gene (ERG-) and proliferation using proliferating cell nuclear antigen (PCNA)-staining. SARS-CoV-2 was detected by in situ hybridization and immunohistochemistry. Biopsies from patients with hemolytic uremic syndrome (HUS, n = 5), severe acute tubular injury (ATI, n = 7), zero biopsies with disseminated intravascular coagulation (DIC, n = 7) and 1 year protocol biopsies from renal transplants (Ctrl, n = 7) served as controls. In the material clogging plasma adsorbers used for extracorporeal therapy of patients with COVID-19 C3 was the dominant protein but collectin 11 and MASP-2 were also identified. SARS-CoV-2 was sporadically present in varying numbers in some biopsies from patients with COVID-19. The highest frequency of CD61-positive platelets was found in peritubular capillaries and arteries of COVID-19 infected renal specimens as compared to all controls. Apart from COVID-19 specimens, MASP-2 was detected in glomeruli with DIC and ATI. In contrast, the classical pathway (i.e. C1q) was hardly seen in COVID-19 biopsies. Both C3 cleavage products C3c and C3d were strongly detected in renal arteries but also occurs in glomerular capillaries of COVID-19 biopsies, while tubular C3d was stronger than C3c in biopsies from COVID-19 patients. The membrane attack complex C5b-9, demonstrating terminal pathway activation, was predominantly deposited in COVID-19 biopsies in peritubular capillaries, renal arterioles, and tubular basement membrane with similar or even higher frequency compared to controls. In conclusion, various complement pathways were activated in COVID-19 kidneys, the lectin pathway mainly in peritubular capillaries and in part the classical pathway in renal arteries whereas the alternative pathway seem to be crucial for tubular complement activation. Therefore, activation of the complement system might be involved in the worsening of renal injury. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury.


Subject(s)
Acute Kidney Injury/immunology , Acute Kidney Injury/virology , COVID-19/complications , COVID-19/immunology , Complement Activation/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...