Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 27(13): 4763-4771, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26321792

ABSTRACT

The promising applications of core-shell nanoparticles in the biological and medical field have been well investigated in recent years. One remaining challenge is the characterization of the structure of the hydrated polymer shell. Here we use small-angle X-ray scattering (SAXS) to investigate iron oxide core-poly(ethylene glycol) brush shell nanoparticles with extremely high polymer grafting density. It is shown that the shell density profile can be described by a scaling model that takes into account the locally very high grafting density near the core. A good fit to a constant density region followed by a star-polymer-like, monotonously decaying density profile is shown, which could help explain the unique colloidal properties of such densely grafted core-shell nanoparticles. SAXS experiments probing the thermally induced dehydration of the shell and the response to dilution confirmed that the observed features are associated with the brush and not attributed to structure factors from particle aggregates. We thereby demonstrate that the structure of monodisperse core-shell nanoparticles with dense solvated shells can be well studied with SAXS and that different density models can be distinguished from each other.

2.
Nanoscale ; 7(25): 11216-25, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26061616

ABSTRACT

Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of applications in e.g. the biomedical field, for which brushes of biocompatible polymers such as poly(ethylene glycol) (PEG) have to be densely grafted to the core. Grafting of such shells to monodisperse iron oxide NPs has remained a challenge mainly due to the conflicting requirements to replace the ligand shell of as-synthesized NPs with irreversibly bound PEG dispersants. We introduce a general two-step method to graft PEG dispersants from a melt to iron oxide NPs first functionalized with nitrodopamine (NDA). This method yields uniquely dense spherical PEG-brushes (∼3 chains per nm(2) of PEG(5 kDa)) compared to existing methods, and remarkably colloidally stable NPs also under challenging conditions.

3.
Cytoskeleton (Hoboken) ; 70(1): 44-53, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23027504

ABSTRACT

Previous results have shown that glial cells provide a soft environment for the neurons of the mammalian central nervous system (CNS). This raises the question whether neurons are confined to the CNS and cannot wander off into more rigid tissues, such as brain capillary walls. We investigated the mechanical properties and force generation of extending mouse retinal ganglion cells and NG108-15 growth cones (GCs) using different atomic force microscope (AFM)-based methods. For the first time, to our knowledge, we were able to measure the forward pushing forces at the leading edge of outgrowing neuronal GCs with our drift-stabilized AFM. Our results demonstrate that these GCs have neither the required stability nor the ability to produce forces necessary to penetrate tissues that are at least an order of magnitude stiffer.


Subject(s)
Microscopy, Atomic Force/methods , Nerve Regeneration/physiology , Animals , Cell Line , Cell Movement/physiology , Cells, Cultured , Cytoskeleton/metabolism , Mice , Mice, Inbred BALB C , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...