Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Placenta ; 139: 134-137, 2023 08.
Article in English | MEDLINE | ID: mdl-37390517

ABSTRACT

The human placenta comes in direct contact with maternal cells and blood at two interfaces. The syncytiotrophoblast layer is surrounded by maternal blood at the intervillous space, and extravillous trophoblasts breach the vascular endothelial cells layer upon spiral artery remodeling and invasion of decidual veins. However, little knowledge exists about EVT-derived secreted factors, which may serve as predictive markers for obstetrical syndromes or shape the local environment at the maternal-fetal interface. Here, we define secreted EVT-associated genes and describe a method that yields interstitial fluids from patient-matched first-trimester decidua basalis and parietalis tissues.


Subject(s)
Extracellular Fluid , Placentation , Pregnancy , Female , Humans , Pregnancy Trimester, First , Decidua/metabolism , Endothelial Cells , Trophoblasts/metabolism , Proteins/metabolism
3.
Cell Rep ; 42(1): 111977, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640334

ABSTRACT

During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.


Subject(s)
Decidua , Trophoblasts , Pregnancy , Female , Humans , Pregnancy Trimester, First/physiology , Decidua/metabolism , Trophoblasts/metabolism , Phenotype , Macrophages/metabolism
4.
Elife ; 102021 09 03.
Article in English | MEDLINE | ID: mdl-34477104

ABSTRACT

Background: Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis, or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations. Methods: Positively charged amino acids of the heparin-binding motif of hDAO were replaced with polar serine or threonine residues. Binding to heparin and heparan sulfate, cellular internalization and clearance in rodents were examined. Results: Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After mutation of the heparin-binding motif, binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated, and the clearance was significantly reduced in rodents. Conclusions: The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues. Funding: Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).


Subject(s)
Amine Oxidase (Copper-Containing) , Amino Acid Motifs/genetics , Biological Products , Heparin/metabolism , Histamine Antagonists , Amine Oxidase (Copper-Containing)/chemistry , Amine Oxidase (Copper-Containing)/genetics , Amine Oxidase (Copper-Containing)/metabolism , Animals , Biological Products/chemistry , Biological Products/metabolism , Histamine Antagonists/chemistry , Histamine Antagonists/metabolism , Humans , Mice , Mutation/genetics , Protein Binding/genetics , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Glycobiology ; 31(4): 444-458, 2021 05 03.
Article in English | MEDLINE | ID: mdl-32985651

ABSTRACT

Human diamine oxidase (hDAO) rapidly inactivates histamine by deamination. No pharmacokinetic data are available to better understand its potential as a new therapeutic modality for diseases with excess local and systemic histamine, like anaphylaxis, urticaria or mastocytosis. After intravenous administration of recombinant hDAO to rats and mice, more than 90% of the dose disappeared from the plasma pool within 10 min. Human DAO did not only bind to various endothelial and epithelial cell lines in vitro, but was also unexpectedly internalized and visible in granule-like structures. The uptake of rhDAO into cells was dependent on neither the asialoglycoprotein-receptor (ASGP-R) nor the mannose receptor (MR) recognizing terminal galactose or mannose residues, respectively. Competition experiments with ASGP-R and MR ligands did not block internalization in vitro or rapid clearance in vivo. The lack of involvement of N-glycans was confirmed by testing various glycosylation mutants. High but not low molecular weight heparin strongly reduced the internalization of rhDAO in HepG2 cells and HUVECs. Human DAO was readily internalized by CHO-K1 cells, but not by the glycosaminoglycan- and heparan sulfate-deficient CHO cell lines pgsA-745 and pgsD-677, respectively. A docked heparin hexasaccharide interacted well with the predicted heparin binding site 568RFKRKLPK575. These results strongly imply that rhDAO clearance in vivo and cellular uptake in vitro is independent of N-glycan interactions with the classical clearance receptors ASGP-R and MR, but is mediated by binding to heparan sulfate proteoglycans followed by internalization via an unknown receptor.


Subject(s)
Amine Oxidase (Copper-Containing) , Heparan Sulfate Proteoglycans , Amine Oxidase (Copper-Containing)/metabolism , Animals , CHO Cells , Cricetinae , Glycosaminoglycans , Heparitin Sulfate/metabolism , Humans , Mice , Rats
6.
Hum Reprod ; 35(11): 2467-2477, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32940686

ABSTRACT

STUDY QUESTION: Do high endothelial venules (HEVs) appear in the uterus of healthy and pathological pregnancies? SUMMARY ANSWER: Our study reveals that HEVs are present in the non-pregnant endometrium and decidua parietalis (decP) but decline upon placentation in decidua basalis (decB) and are less abundant in decidual tissues from idiopathic, recurrent pregnancy losses (RPLs). WHAT IS KNOWN ALREADY: RPL is associated with a compromised decidual vascular phenotype. STUDY DESIGN, SIZE, DURATION: Endometrial (n = 29) and first trimester decidual (n = 86, 6-12th week of gestation) tissue samples obtained from endometrial biopsies or elective pregnancy terminations were used to determine the number of HEVs and T cells. In addition, quantification of HEVs and immune cells was performed in a cohort of decidual tissues from RPL (n = 25). PARTICIPANTS/MATERIALS, SETTING, METHODS: Position and frequency of HEVs were determined in non-pregnant endometrial as well as decidual tissue sections using immunofluorescence (IF) staining with antibodies against E-selectin, intercellular adhesion molecule, von Willebrand factor, ephrin receptor B4, CD34 and a carbohydrate epitope specific to HEVs (MECA-79). Immune cell distribution and characterization was determined by antibodies recognizing CD45 and CD3 by IF staining- and flow cytometry-based analyses. Antibodies against c-c motif chemokine ligand 21 (CCL21) and lymphotoxin-beta were used in IF staining and Western blot analyses of decidual tissues. MAIN RESULTS AND THE ROLE OF CHANCE: Functional HEVs are found in high numbers in the secretory endometrium and decP but decline in numbers upon placentation in decB (P ≤ 0.001). Decidua parietalis tissues contain higher levels of the HEV-maintaining factor lymphotoxin beta and decP-associated HEVs also express CCL21 (P ≤ 0.05), a potent T-cell chemoattractant. Moreover, there is a positive correlation between the numbers of decidual HEVs and the abundance of CD3+ cells in decidual tissue sections (P ≤ 0.001). In-depth analysis of a RPL tissue collection revealed a decreased decB (P ≤ 0.01) and decP (P ≤ 0.01) HEV density as well as reduced numbers of T cells in decB (P ≤ 0.05) and decP (P ≤ .001) sections when compared with age-matched healthy control samples. Using receiver-operating characteristics analyses, we found significant predictive values for the ratios of CD3/CD45 (P < 0.001) and HEVs/total vessels (P < 0.001) for the occurrence of RPL. LIMITATIONS, REASONS FOR CAUTION: Analyses were performed in first trimester decidual tissues from elective terminations of pregnancy or non-pregnant endometrium samples from patients diagnosed with non-endometrial pathologies including cervical polyps, ovarian cysts and myomas. First trimester decidual tissues may include pregnancies which potentially would have developed placental disorders later in gestation. In addition, our cohort of non-pregnant endometrium may not reflect the endometrial vascular phenotype of healthy women. Finally, determination of immune cell distributions in the patient cohorts studied may be influenced by the different modes of tissue derivation. Pregnancy terminations were performed by surgical aspiration, endometrial tissues were obtained by biopsies and RPL tissues were collected after spontaneous loss of pregnancy. WIDER IMPLICATIONS OF THE FINDINGS: In this study, we propose an inherent mechanism by which the endometrium and in particular the decidua control T-cell recruitment. By demonstrating reduced HEV densities and numbers of T cells in decB and decP tissues of RPL samples we further support previous findings reporting an altered vascular phenotype in early pregnancy loss. Altogether, the findings provide important information to further decipher the etiologies of unexplained RPL. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Austrian Science Fund (P31470 B30 to M.K.) and by the Austrian National Bank (17613ONB to J.P.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Decidua , Trophoblasts , Austria , Female , Humans , Pregnancy , Pregnancy Trimester, First , T-Lymphocytes , Venules
7.
J Lipid Res ; 60(11): 1922-1934, 2019 11.
Article in English | MEDLINE | ID: mdl-31530576

ABSTRACT

During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.


Subject(s)
Abortion, Habitual/metabolism , Cholesterol/metabolism , Progesterone/metabolism , Trophoblasts/metabolism , Computational Biology , Female , Homeostasis , Humans , Pregnancy , Sequence Analysis, RNA
8.
Front Immunol ; 9: 2597, 2018.
Article in English | MEDLINE | ID: mdl-30483261

ABSTRACT

During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.


Subject(s)
Placenta/immunology , Placenta/physiology , Trophoblasts/immunology , Trophoblasts/physiology , Uterus/immunology , Uterus/physiology , Animals , Cell Differentiation/immunology , Cell Differentiation/physiology , Cell Movement/immunology , Cell Movement/physiology , Endometrium/immunology , Endometrium/physiology , Female , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/physiology , Pregnancy
9.
PLoS Genet ; 14(10): e1007698, 2018 10.
Article in English | MEDLINE | ID: mdl-30312291

ABSTRACT

Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) ß-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.


Subject(s)
Cellular Senescence/physiology , Placenta/metabolism , Placenta/physiology , Cell Cycle , Cell Cycle Checkpoints , Cell Differentiation , Cell Movement , Cell Proliferation , Endometrium/cytology , Female , Genome/physiology , Humans , Placentation/genetics , Placentation/physiology , Polyploidy , Pregnancy , Pregnancy Trimester, First , Primary Cell Culture , Tetraploidy , Trophoblasts/metabolism
10.
Sci Rep ; 8(1): 6342, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29679053

ABSTRACT

Human extravillous trophoblast (EVT) invasion of the pregnant uterus constitutes a pivotal event for the establishment of the maternal-fetal interface. Compromised EVT function manifesting in inadequate arterial remodeling is associated with the severe pregnancy disorder early-onset preeclampsia (eoPE). Recent studies suggest that EVTs invade the entire uterine vasculature including arteries, veins and lymphatics in the first trimester of pregnancy. We therefore hypothesized that EVT-derived factors accumulate in the circulation of pregnant women early in gestation and may serve to predict eoPE. In contrast to published literature, we demonstrate that placenta-associated diamine oxidase (DAO) is not expressed by maternal decidual cells but solely by EVTs, especially when in close proximity to decidual vessels. Cultures of primary EVTs express and secret large amounts of bioactive DAO. ELISA measurements indicate a pregnancy-specific rise in maternal DAO plasma levels around gestational week (GW) 7 coinciding with vascular invasion of EVTs. Strikingly, DAO levels from eoPE cases were significantly lower (40%) compared to controls in the first trimester of pregnancy but revealed no difference at mid gestation. Furthermore, DAO-containing pregnancy plasma rapidly inactivates pathophysiologically relevant histamine levels. This study represents the first proof of concept suggesting EVT-specific signatures as diagnostic targets for the prediction of eoPE.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/cytology , Arteries/cytology , Decidua/cytology , Female , Gestational Age , Humans , Lymphatic Vessels/cytology , Lymphatic Vessels/metabolism , Placenta/cytology , Pre-Eclampsia/physiopathology , Pregnancy , Pregnancy Trimester, First , Proof of Concept Study , Trophoblasts/metabolism , Trophoblasts/physiology , Uterus/physiology , Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...