Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 112(33): 10142-52, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18651762

ABSTRACT

Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11-12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying. Organic dispersions in toluene were prepared of the particles with the largest size and highest aspect ratio. The colloidal dispersions prepared in this way showed isotropic-nematic phase transitions above a limiting concentration in a matter of days. The number density at the transition and the width of the biphasic region were determined and compared to theory. The orientation of the platelets in nematic droplets (tactoids) and at the isotropic-nematic interface were analyzed by polarization microscopy. It was observed that sedimentation induces a nematic layer in samples that are below the limiting concentration for isotropic-nematic phase separation. No nematic phase was observed in the initial aqueous suspensions of the ungrafted particles.

2.
J Colloid Interface Sci ; 287(2): 521-5, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15925618

ABSTRACT

We describe the fluorescent labeling of gibbsite particles. Gibbsite particles are first stabilized with polyvinyl pyrrolidone. Subsequently the particles are covered with a silica layer in which a fluorescent dye is incorporated. Both fluorescein and rhodamine dyes have been used. The fluorescent labeling is applicable to gibbsite particles of various sizes. Particles are transferred to dimethyl formamide by vacuum distillation after dialysis. These particles are used for confocal scanning laser microscopy and confocal fluorescence-recovery after photobleaching.

3.
J Am Chem Soc ; 126(51): 16706-7, 2004 Dec 29.
Article in English | MEDLINE | ID: mdl-15612692

ABSTRACT

Magnetite (Fe3O4) forms the basis of most dispersions studied in the field of magnetic fluids and magnetic colloids. Despite extensive theory and simulations on chain formation in dipolar fluids in zero field, such structures have not yet been imaged in laboratory-made magnetite dispersions. Here, we present the first direct observation of dipolar chain formation in zero field in a ferrofluid containing the largest synthetic single-domain magnetite particles studied so far. To our knowledge, this is the only ferrofluid system available at present that allows quantifying chain length and ring-size distributions of dipolar structures as a function of concentration and particle size.

SELECTION OF CITATIONS
SEARCH DETAIL
...