Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Pharmacol Exp Ther ; 371(3): 713-717, 2019 12.
Article in English | MEDLINE | ID: mdl-31570498

ABSTRACT

The purpose of this minireview is to show that a new paradigm is developing regarding hepatic bile flow. The focus thus far has been on carrier-mediated transport of bile acids and other solutes, such as glutathione, which create an osmotic gradient for the transcellular and paracellular flow of water into canaliculi. In addition to the physicochemical properties of bile acids, which govern the osmotic gradient, data now exist showing that the tight junctions governing paracellular water flow and Aquaporin-8 water channels governing transcellular water flow are regulated independently. Thus, the rate of water flow into the canaliculus in response to bile acid transport is variable and determines canalicular bile acid concentration, which affects the production and solubilization of cholesterol-lecithin vesicles. These new considerations modify thinking regarding the occurrence of cholestasis and its progression and reorient the design of experimental studies that can distinguish the different determinants of bile flow. SIGNIFICANCE STATEMENT: The paradigm that water flow into the canaliculus is determined only by the rate of carrier-mediated transport has been challenged recently by the changes that occur in hepatic bile composition in the Claudin-2 knockout mouse and with the cholestatic effect of estradiol 17ß-d-glucuronide. Thus, a respective reduction in paracellular or transcellular canalicular water flow, probably via Aquaporin 8, has no significant effect on bile acid excretion.


Subject(s)
Bile Canaliculi/metabolism , Bile/physiology , Body Water/metabolism , Animals , Aquaporins/physiology , Bile Acids and Salts/metabolism , Biological Transport , Claudin-2/physiology , Estradiol/pharmacology , Humans , Mice , Osmolar Concentration
3.
Curr Med Chem ; 26(7): 1155-1184, 2019.
Article in English | MEDLINE | ID: mdl-29589524

ABSTRACT

ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Intestine, Small/metabolism , Liver/metabolism , Membrane Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/metabolism , Myocardium/metabolism , Neoplasm Proteins/metabolism , Oxidative Stress
4.
Mol Pharmacol ; 93(4): 286-287, 2018 04.
Article in English | MEDLINE | ID: mdl-29491043
5.
J Pharmacol Exp Ther ; 365(1): 94-95, 2018 04.
Article in English | MEDLINE | ID: mdl-29491147
7.
Brain Res ; 1672: 10-17, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28705715

ABSTRACT

Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary excitatory neurotransmitter. Mice treated with DOX (25mg/kg i.p.) were subjected to in vivo recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, amperometric recordings measured parameters of extracellular glutamate clearance and potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) of the hippocampus. By 24h post-DOX injection, glutamate uptake was 45% slower in the FC in comparison to saline-treated mice. In the DG, glutamate took 48% longer to clear than saline-treated mice. Glutamate overflow in the FC was similar between treatment groups, however, it was significantly increased in the DG of DOX treated mice. MWM data indicated that a single dose of DOX impaired swim speed without impacting total length traveled. These data indicate that systemic DOX treatment changes glutamate neurotransmission in key nuclei associated with cognitive function within 24h, without a lasting impact on spatial learning and memory. Understanding the functional effects of DOX on glutamate neurotransmission may help us understand and prevent some of the debilitating side effects of chemotherapeutic treatment in cancer survivors.


Subject(s)
Doxorubicin/pharmacology , Glutamic Acid/drug effects , Glutamic Acid/metabolism , Animals , Cognition/drug effects , Dentate Gyrus/drug effects , Doxorubicin/metabolism , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory/drug effects , Memory/physiology , Mice , Spatial Learning/drug effects , Synaptic Transmission/drug effects , Temporal Lobe
8.
Free Radic Biol Med ; 97: 85-94, 2016 08.
Article in English | MEDLINE | ID: mdl-27212018

ABSTRACT

Cellular redox balance plays a significant role in the regulation of hematopoietic stem-progenitor cell (HSC/MPP) self-renewal and differentiation. Unregulated changes in cellular redox homeostasis are associated with the onset of most hematological disorders. However, accurate measurement of the redox state in stem cells is difficult because of the scarcity of HSC/MPPs. Glutathione (GSH) constitutes the most abundant pool of cellular antioxidants. Thus, GSH metabolism may play a critical role in hematological disease onset and progression. A major limitation to studying GSH metabolism in HSC/MPPs has been the inability to measure quantitatively GSH concentrations in small numbers of HSC/MPPs. Current methods used to measure GSH levels not only rely on large numbers of cells, but also rely on the chemical/structural modification or enzymatic recycling of GSH and therefore are likely to measure only total glutathione content accurately. Here, we describe the validation of a sensitive method used for the direct and simultaneous quantitation of both oxidized and reduced GSH via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) in HSC/MPPs isolated from bone marrow. The lower limit of quantitation (LLOQ) was determined to be 5.0ng/mL for GSH and 1.0ng/mL for GSSG with lower limits of detection at 0.5ng/mL for both glutathione species. Standard addition analysis utilizing mouse bone marrow shows that this method is both sensitive and accurate with reproducible analyte recovery. This method combines a simple extraction with a platform for the high-throughput analysis, allows for efficient determination of GSH/GSSG concentrations within the HSC/MPP populations in mouse, chemotherapeutic treatment conditions within cell culture, and human normal/leukemia patient samples. The data implicate the importance of the modulation of GSH/GSSG redox couple in stem cells related diseases.


Subject(s)
Chromatography, Liquid/methods , Glutathione Disulfide/isolation & purification , Glutathione/isolation & purification , Tandem Mass Spectrometry/methods , Animals , Glutathione/metabolism , Glutathione Disulfide/metabolism , Hematopoietic Stem Cells/metabolism , Humans , MCF-7 Cells , Mice , Oxidation-Reduction , Oxidative Stress
9.
Toxicol Sci ; 151(1): 44-56, 2016 05.
Article in English | MEDLINE | ID: mdl-26822305

ABSTRACT

Doxorubicin (DOX) induces dose-dependent cardiotoxicity in part due to its ability to induce oxidative stress. We showed that loss of multidrug resistance-associated protein 1 (Abcc1/Mrp1) potentiates DOX-induced cardiac dysfunction in mice in vivo Here, we characterized DOX toxicity in cultured cardiomyocytes (CM) and cardiac fibroblasts (CF) derived from C57BL wild type (WT) and Mrp1 null (Mrp1-/-) neonatal mice. CM accumulated more intracellular DOX relative to CF but this accumulation did not differ between genotypes. Following DOX (0.3-4 µM), Mrp1-/- CM, and CF, especially CM, showed a greater decrease in viability and increased apoptosis and DNA damage, demonstrated by higher caspase 3 cleavage, poly (ADP-ribose) polymerase 1 (PARP) cleavage and phosphorylated histone H2AX (γH2AX) levels versus WT cells. Saline- and DOX-treated Mrp1-/- cells had significantly higher intracellular GSH and GSSG compared with WT cells (P < .05), but the redox potential (Eh) of the GSH/GSSG pool did not differ between genotypes in CM and CF, indicating that Mrp1-/- cells maintain this major redox couple. DOX increased expression of the rate-limiting GSH synthesis enzyme glutamate-cysteine ligase catalytic (GCLc) and regulatory subunits (GCLm) to a significantly greater extent in Mrp1-/- versus WT cells, suggesting adaptive responses to oxidative stress in Mrp1-/- cells that were inadequate to afford protection. Expression of extracellular superoxide dismutase (ECSOD/SOD3) was lower (P < .05) in Mrp1-/- versus WT CM treated with saline (62% ± 8% of WT) or DOX (43% ± 12% of WT). Thus, Mrp1 protects CM in particular and CF against DOX-induced toxicity, potentially by regulating extracellular redox states.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Fibroblasts/drug effects , Heart Diseases/chemically induced , Multidrug Resistance-Associated Proteins/deficiency , Myocytes, Cardiac/drug effects , Animals , Animals, Newborn , Apoptosis/drug effects , Cardiotoxicity , Caspase 3/metabolism , Cell Survival/drug effects , Cells, Cultured , DNA Damage , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Glutathione/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/pathology , Histones/metabolism , Mice, Inbred C57BL , Mice, Knockout , Multidrug Resistance-Associated Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Oxidative Stress/drug effects , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/metabolism , Superoxide Dismutase/metabolism , Time Factors
10.
Free Radic Biol Med ; 91: 68-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26689472

ABSTRACT

Cardiovascular complications are major side effects of many anticancer drugs. Accumulated evidence indicates that oxidative stress in mitochondria plays an important role in cardiac injury, but how mitochondrial redox mechanisms are involved in cardiac dysfunction remains unclear. Here, we demonstrate that 4-hydroxy-2-nonenal (HNE) activates the translocation of the mitochondrial apoptosis inducing factor (AIFm2) and facilitates apoptosis in heart tissue of mice and humans. Doxorubicin treatments significantly enhance cardiac levels of HNE and AIFm2. HNE adduction of AIFm2 inactivates the NADH oxidoreductase activity of AIFm2 and facilitates its translocation from mitochondria. His 174 on AIFm2 is the critical target of HNE adduction that triggers this functional switch. HNE adduction and translocation of AIFm2 from mitochondria upon Doxorubicin treatment are attenuated by superoxide dismutase mimetics. These results identify a previously unrecognized role of HNE with important consequences for mitochondrial stress signaling, heart failure, and the side effects of cancer therapy.


Subject(s)
Aldehydes/metabolism , Apoptosis Regulatory Proteins/metabolism , Mitochondria, Heart/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Animals , Antibiotics, Antineoplastic/toxicity , Apoptosis , Doxorubicin/toxicity , Heart Diseases/chemically induced , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/drug effects , Oxidation-Reduction , Protein Transport , Signal Transduction
11.
J Pharmacol Exp Ther ; 355(2): 280-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354995

ABSTRACT

Doxorubicin (DOX), an effective cancer chemotherapeutic agent, induces dose-dependent cardiotoxicity, in part due to its ability to cause oxidative stress. We investigated the role of multidrug resistance-associated protein 1 (Mrp1/Abcc1) in DOX-induced cardiotoxicity in C57BL wild-type (WT) mice and their Mrp1 null (Mrp1(-/-)) littermates. Male mice were administered intraperitoneal DOX (3 or 2 mg/kg body weight) or saline twice a week for 3 weeks and examined 2 weeks after the last dose (protocol A total dose: 18 mg/kg) or for 5 weeks, and mice were examined 48 hours and 2 weeks after the last dose (protocol B total dose: 20 mg/kg). Chronic DOX induced body weight loss and hemotoxicity, adverse effects significantly exacerbated in Mrp1(-/-) versus WT mice. In the heart, significantly higher basal levels of glutathione (1.41-fold ± 0.27-fold) and glutathione disulfide (1.35-fold ± 0.16-fold) were detected in Mrp1(-/-) versus WT mice, and there were comparable decreases in the glutathione/glutathione disulfide ratio in WT and Mrp1(-/-) mice after DOX administration. Surprisingly, DOX induced comparable increases in 4-hydroxynonenal glutathione conjugate concentration in hearts from WT and Mrp1(-/-) mice. However, more DOX-induced apoptosis was detected in Mrp1(-/-) versus WT hearts (P < 0.05) (protocol A), and cardiac function, assessed by measurement of fractional shortening and ejection fraction with echocardiography, was significantly decreased by DOX in Mrp1(-/-) versus WT mice (P < 0.05; 95% confidence intervals of 20.0%-24.3% versus 23.7%-29.5% for fractional shortening, and 41.5%-48.4% versus 47.7%-56.7% for ejection fraction; protocol B). Together, these data indicate that Mrp1 protects the mouse heart against chronic DOX-induced cardiotoxicity.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cardiotoxicity/physiopathology , Doxorubicin/toxicity , Multidrug Resistance-Associated Proteins/genetics , Animals , Apoptosis , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Glutathione/analogs & derivatives , Glutathione/metabolism , Glutathione Disulfide/metabolism , Leukocyte Count , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Systole , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/physiopathology
12.
J Pharmacol Exp Ther ; 355(2): 272-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354996

ABSTRACT

Cardiotoxicity is a major dose-limiting adverse effect of doxorubicin (DOX), mediated in part by overproduction of reactive oxygen species and oxidative stress. Abcc1 (Mrp1) mediates the efflux of reduced and oxidized glutathione (GSH, GSSG) and is also a major transporter that effluxes the GSH conjugate of 4-hydroxy-2-nonenal (HNE; GS-HNE), a toxic product of lipid peroxidation formed during oxidative stress. To assess the role of Mrp1 in protecting the heart from DOX-induced cardiac injury, wild-type (WT) and Mrp1 null (Mrp1(-/-)) C57BL/6 littermate mice were administered DOX (15 mg/kg) or saline (7.5 ml/kg) i.v., and heart ventricles were examined at 72 hours. Morphometric analysis by electron microscopy revealed extensive injuries in cytosol, mitochondria, and nuclei of DOX-treated mice in both genotypes. Significantly more severely injured nuclei were observed in Mrp1(-/-) versus WT mice (P = 0.031). GSH and the GSH/GSSG ratio were significantly increased in treatment-naïve Mrp1(-/-) versus WT mice; GSH remained significantly higher in Mrp1(-/-) versus WT mice after saline and DOX treatment, with no changes in GSSG or GSH/GSSG. GS-HNE, measured by mass spectrometry, was lower in the hearts of treatment-naïve Mrp1(-/-) versus WT mice (P < 0.05). DOX treatment decreased GS-HNE in WT but not Mrp1(-/-) mice, so that GS-HNE was modestly but significantly higher in Mrp1(-/-) versus WT hearts after DOX. Expression of enzymes mediating GSH synthesis and antioxidant proteins did not differ between genotypes. Thus, despite elevated GSH levels in Mrp1(-/-) hearts, DOX induced significantly more injury in the nuclei of Mrp1(-/-) versus WT hearts.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cell Nucleus/drug effects , Doxorubicin/toxicity , Glutathione/metabolism , Multidrug Resistance-Associated Proteins/genetics , Myocardium/metabolism , Myocardium/ultrastructure , Animals , Cardiotoxicity/metabolism , Glutathione/analogs & derivatives , Glutathione Disulfide/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress
13.
PLoS One ; 10(4): e0124988, 2015.
Article in English | MEDLINE | ID: mdl-25909710

ABSTRACT

PURPOSE: Chemotherapy-induced cognitive impairment (CICI) is a common sequelae of cancer therapy. Recent preclinical observations have suggested that CICI can be mediated by chemotherapy-induced plasma protein oxidation, which triggers TNF-α mediated CNS damage. This study evaluated sodium-2-mercaptoethane sulfonate (Mesna) co-administration with doxorubicin to reduce doxorubicin-induced plasma protein oxidation and resultant cascade of TNF-α, soluble TNF receptor levels and related cytokines. METHODS: Thirty-two evaluable patients were randomized using a crossover design to receive mesna or saline in either the first or second cycle of doxorubicin in the context of a standard chemotherapy regimen for either non-Hodgkin lymphoma or breast cancer. Mesna (360 mg/m2) or saline administration occurred 15 minutes prior and three hours post doxorubicin. Pre-treatment and post-treatment measurements of oxidative stress, TNF-α and related cytokines were evaluated during the two experimental cycles of chemotherapy. RESULTS: Co-administration of mesna with chemotherapy reduced post-treatment levels of TNF-related cytokines and TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2) (p = 0.05 and p = 0.002, respectively). Patients with the highest pre-treatment levels of each cytokine and its receptors were the most likely to benefit from mesna co-administration. CONCLUSIONS: The extracellular anti-oxidant mesna, when co-administered during a single cycle of doxorubicin, reduced levels of TNF-α and its receptors after that cycle of therapy, demonstrating for the first time a clinical interaction between mesna and doxorubicin, drugs often coincidentally co-administered in multi-agent regimens. These findings support further investigation to determine whether rationally-timed mesna co-administration with redox active chemotherapy may prevent or reduce the cascade of events that lead to CICI. TRIAL REGISTRATION: clinicaltrials.gov NCT01205503.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Mesna/administration & dosage , Protective Agents/administration & dosage , Receptors, Tumor Necrosis Factor/blood , Tumor Necrosis Factor-alpha/blood , Antineoplastic Agents/adverse effects , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Cognition Disorders/blood , Cognition Disorders/chemically induced , Cognition Disorders/prevention & control , Cross-Over Studies , Doxorubicin/adverse effects , Drug Interactions , Female , Humans , Interleukin-18/blood , Lymphoma, Non-Hodgkin/blood , Lymphoma, Non-Hodgkin/drug therapy , Male , Middle Aged , Oxidation-Reduction , Solubility
14.
Toxicology ; 320: 46-55, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24685904

ABSTRACT

ABC transporters including MRP2, MDR1 and BCRP play a major role in tissue defense. Epidemiological and experimental studies suggest a cytoprotective role of estrogens in intestine, though the mechanism remains poorly understood. We evaluated whether pharmacologic concentrations of ethynylestradiol (EE, 0.05pM to 5nM), or concentrations of genistein (GNT) associated with soy ingestion (0.1-10µM), affect the expression and activity of multidrug resistance proteins MRP2, MDR1 and BCRP using Caco-2 cells, an in vitro model of intestinal epithelium. We found that incubation with 5pM EE and 1µM GNT for 48h increased expression and activity of both MRP2 and MDR1. Estrogens did not affect expression of BCRP protein at any concentration studied. Irrespective of the estrogen tested, up-regulation of MDR1 and MRP2 protein was accompanied by increased levels of MDR1 mRNA, whereas MRP2 mRNA remained unchanged. Cytotoxicity assays demonstrated association of MRP2 and MDR1 up-regulation with increased resistance to cell death induced by 1-chloro-2,4-dinitrobenzene, an MRP2 substrate precursor, and by paraquat, an MDR1 substrate. Experiments using an estrogen receptor (ER) antagonist implicate ER participation in MRP2 and MDR1 regulation. GNT but not EE increased the expression of ERß, the most abundant form in human intestine and in Caco-2 cells, which could lead in turn to increased sensitivity to estrogens. We conclude that specific concentrations of estrogens can confer resistance against cytotoxicity in Caco-2 cells, due in part to positive modulation of ABC transporters involved in extrusion of their toxic substrates. Although extrapolation of these results to the in vivo situation must be cautiously done, the data could explain tentatively the cytoprotective role of estrogens against chemical injury in intestine.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , ATP-Binding Cassette Transporters/drug effects , Ethinyl Estradiol/pharmacology , Genistein/pharmacology , Multidrug Resistance-Associated Proteins/drug effects , Neoplasm Proteins/drug effects , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Caco-2 Cells , Dinitrochlorobenzene/toxicity , Dose-Response Relationship, Drug , Estrogen Antagonists/pharmacology , Estrogen Receptor beta/genetics , Ethinyl Estradiol/administration & dosage , Gene Expression Regulation/drug effects , Genistein/administration & dosage , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Paraquat/toxicity , RNA, Messenger/metabolism , Glycine max/chemistry , Up-Regulation/drug effects , Xenobiotics/toxicity
15.
Compr Physiol ; 3(4): 1721-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24265243

ABSTRACT

The human body is constantly exposed to many xenobiotics including environmental pollutants, food additives, therapeutic drugs, etc. The liver is considered the primary site for drug metabolism and elimination pathways, consisting in uptake, phase I and II reactions, and efflux processes, usually acting in this same order. Modulation of biotransformation and disposition of drugs of clinical application has important therapeutic and toxicological implications. We here provide a compilation and analysis of relevant, more recent literature reporting hormonal regulation of hepatic drug biotransformation and transport systems. We provide additional information on the effect of hormones that tentatively explain differences between sexes. A brief discussion on discrepancies between experimental models and species, as well as a link between gender-related differences and the hormonal mechanism explaining such differences, is also presented. Finally, we include a comment on the pathophysiological, toxicological, and pharmacological relevance of these regulations.


Subject(s)
Biotransformation , Gonadal Hormones/metabolism , Ion Pumps/metabolism , Liver/metabolism , Animals , Female , Humans , Male , Sex Characteristics
16.
Biochem Pharmacol ; 86(3): 401-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23747343

ABSTRACT

Previously, we have demonstrated that 17α-ethynylestradiol (EE) induces rat multidrug-resistance associated protein 3 (Mrp3, Abcc3) expression transcriptionally through estrogen receptor-α (ER-α) activation. We explored the effect of EE on MRP3 expression of human origin. HepG2 cells were transfected with ER-α and incubated with EE (1-10-50 µM) for 48 h. MRP3 protein and mRNA levels were measured by Western blotting and Real time PCR, respectively. EE up-regulated MRP3 protein and mRNA at 50 µM only in ER-α(+)-HepG2 cells. The in silico analysis of mrp3 promoter region demonstrated absence of estrogen response elements, but showed several Ap-1 binding sites. We further evaluated the potential involvement of the transcription factors c-JUN and c-FOS (members of Ap-1) in MRP3 up-regulation. ER-α(+) HepG2 cells were incubated with EE and c-FOS and c-JUN levels measured by Western blotting in nuclear extracts. EE up-regulated only c-JUN. Experiments of overexpression and knock-down of c-JUN by siRNA further demonstrated that this transcription factor is indeed implicated in MRP3 upregulation by EE. Co-immunoprecipitation assay demonstrated that EE induces c-JUN/ER-α interaction, and chromatin immunoprecipitation assay showed that this complex is recruited to the AP-1 binding consensus element present at the position (-1300/-1078 bp) of human mrp3 promoter. We conclude that EE induces MRP3 expression through ER-α, with recruitment of ER-α in complex with c-JUN to the human mrp3 promoter.


Subject(s)
Estrogen Receptor alpha/physiology , Ethinyl Estradiol/pharmacology , Multidrug Resistance-Associated Proteins/biosynthesis , Transcription Factor AP-1/physiology , Base Sequence , Hep G2 Cells , Humans , Molecular Sequence Data , Multidrug Resistance-Associated Proteins/genetics
17.
Drug Metab Dispos ; 41(2): 275-80, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23077105

ABSTRACT

Multidrug resistance-associated protein 3 (Mrp3; Abcc3) expression and activity are up-regulated in rat liver after in vivo repeated administration of ethynylestradiol (EE), a cholestatic synthetic estrogen, whereas multidrug resistance-associated protein 2 (Mrp2) is down-regulated. This study was undertaken to determine whether Mrp3 induction results from a direct effect of EE, independent of accumulation of any endogenous common Mrp2/Mrp3 substrates resulting from cholestasis and the potential mediation of estrogen receptor (ER). In in vivo studies, male rats were given a single, noncholestatic dose of EE (5 mg/kg s.c.), and basal bile flow and the biliary excretion rate of bile salts and glutathione were measured 5 hours later. This treatment increased Mrp3 mRNA by 4-fold, detected by real-time polymerase chain reaction, despite the absence of cholestasis. Primary culture of rat hepatocytes incubated with EE (1-10 µM) for 5 hours exhibited a 3-fold increase in Mrp3 mRNA (10 µM), consistent with in vivo findings. The increase in Mrp3 mRNA by EE was prevented by actinomycin D, indicating transcriptional regulation. When hepatocytes were incubated with an ER antagonist [7α,17ß-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI182/780), 1 µM], in addition to EE, induction of Mrp3 mRNA was abolished, implicating ER as a key mediator. EE induced an increase in ER-α phosphorylation at 30 minutes and expression of c-Jun, a well-known ER target gene, at 60 minutes, as detected by Western blotting of nuclear extracts. These increases were prevented by ICI182/780. In summary, EE increased the expression of hepatic Mrp3 transcriptionally and independently of any cholestatic manifestation and required participation of an ER, most likely ER-α, through its phosphorylation.


Subject(s)
Cholestasis/metabolism , Estrogen Receptor alpha/agonists , Estrogens/pharmacology , Ethinyl Estradiol/pharmacology , Liver/drug effects , Multidrug Resistance-Associated Proteins/drug effects , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cells, Cultured , Cholestasis/genetics , Dactinomycin/pharmacology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Fulvestrant , Glutathione/metabolism , Liver/metabolism , Male , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-jun/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Time Factors , Up-Regulation
18.
J Biol Chem ; 287(29): 24784-94, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22619174

ABSTRACT

The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid ß-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid ß-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cholestasis/etiology , Cholestasis/metabolism , Fatty Acids/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/genetics , Animals , Cholestasis/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Real-Time Polymerase Chain Reaction
19.
Drug Metab Dispos ; 40(7): 1252-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22453052

ABSTRACT

The ability of the liver, small intestine, and kidney to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), was assessed in rats treated with glucagon-like peptide 2 (GLP-2, 12 µg/100 g b.wt. s.c. every 12 h for 5 consecutive days). An in vivo perfused jejunum model with simultaneous bile and urine collection was used. A single intravenous dose of 30 µmol/kg b.wt. 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its conjugate, DNP-SG, and dinitrophenyl cysteinyl glycine (DNP-CG), resulting from the action of γ-glutamyltransferase on DNP-SG, were determined in bile, intestinal perfusate, and urine by high-performance liquid chromatography. Tissue content of DNP-SG was also assessed in liver, intestine, and kidneys. Biliary excretion of DNP-SG+DNP-CG was decreased in GLP-2 rats with respect to controls. In contrast, their intestinal excretion was substantially increased, whereas urinary elimination was not affected. Western blot and real-time polymerase chain reaction studies revealed preserved levels of Mrp2 protein and mRNA in liver and renal cortex and a significant increase in intestine in response to GLP-2 treatment. Tissue content of DNP-SG detected 5 min after CDNB administration was decreased in liver, increased in intestine, and unchanged in kidney in GLP-2 versus control group, consistent with GLP-2-induced down-regulation of expression of glutathione transferase (GST) Mu in liver and up-regulation of GST-Alpha in intestine at both protein and mRNA levels. In conclusion, GLP-2 induced selective changes in hepatic and intestinal disposition of a common GST and Mrp2 substrate administered systemically that could be of pharmacological or toxicological relevance under therapeutic treatment conditions.


Subject(s)
Dinitrochlorobenzene/pharmacokinetics , Glucagon-Like Peptide 2/pharmacology , Jejunum/metabolism , Kidney/metabolism , Liver/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Bile/metabolism , Dinitrobenzenes/metabolism , Dinitrochlorobenzene/pharmacology , Down-Regulation/drug effects , Female , Glutathione/analogs & derivatives , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Jejunum/drug effects , Kidney/drug effects , Liver/drug effects , RNA, Messenger/genetics , Rats , Rats, Wistar , Up-Regulation/drug effects , gamma-Glutamyltransferase/metabolism
20.
Pharmacogenet Genomics ; 22(4): 273-84, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22293538

ABSTRACT

OBJECTIVE: Doxorubicin-induced acute cardiotoxicity is associated with the Gly671Val (G671V; rs45511401) variant of multidrug resistance-associated protein 1 (MRP1). Doxorubicin redox cycling causes lipid peroxidation and generation of the reactive electrophile, 4-hydroxy-2-trans-nonenal (HNE). Glutathione forms conjugates with HNE, yielding an MRP1 substrate, GS-HNE, whose intracellular accumulation can cause toxicity. METHODS: We established stable HEK293 cell lines overexpressing wild-type MRP1 (HEKMRP1), G671V (HEKG671V), and R433S (HEKR433S), a variant not associated with doxorubicin-induced cardiotoxicity and investigated the sensitivity of HEKG671V cells to doxorubicin and transport capacity of G671V toward GS-HNE. RESULTS: In ATP-dependent transport studies using plasma membrane-derived vesicles, the Vmax (pmol/min/mg) for GS-HNE transport was the lowest for G671V (69±4) and the highest for R433S (972±213) compared with wild-type MRP1 (416±22), whereas the Km values were 2.8±0.4, 6.0 or more, and 1.7±0.2 µmol/l, respectively. In cells, the doxorubicin IC50 (48 h) was not different in HEKMRP1 (463 nmol/l) versus HEKR433S (645 nmol/l), but this parameter was significantly lower in HEKG671V (181 nmol/l). HEKG671V retained significantly (approximately 20%) more, whereas HEKR433S retained significantly less intracellular doxorubicin than HEKMRP1. Similarly, HEKG671V cells treated with 1.5 µmol/l of doxorubicin for 24 h retained significantly more GS-HNE. In cells treated with 0.5 µmol/l of doxorubicin for 48 , glutathione and glutathione disulfide levels and the glutathione/glutathione disulfide ratio were significantly decreased in HEKG671V versus HEKMRP1; these values were similar in HEKR433S versus HEKMRP1. CONCLUSION: These data suggest that decreased MRP1-dependent GS-HNE efflux contributes to increased doxorubicin toxicity in HEKG671V and potentially in individuals carrying the G671V variant.


Subject(s)
Doxorubicin/pharmacokinetics , Genetic Variation , Glutathione/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/pharmacokinetics , ATP-Binding Cassette Transporters/metabolism , Aldehydes/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Doxorubicin/toxicity , Gene Expression , Glutathione Disulfide/metabolism , HEK293 Cells , Heart/drug effects , Humans , Lipid Peroxidation , Mice , Sarcolemma/drug effects , Sarcolemma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...