Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 642: 123100, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37286022

ABSTRACT

Probiotic microorganisms provide health benefits to the patient when administered in a viable form and in sufficient doses. To ensure this, dry dosage forms are preferred, with tablets in particular being favored due to several advantages. However, the microorganisms must first be dried as gently as possible. Here, the model organism Saccharomyces cerevisiae was dried by spray drying. Various additives were tested for their ability to improve yeast cell survival during drying. In addition, the influence of various process parameters such as inlet temperature, outlet temperature, spray rate, spray pressure and nozzle diameter was investigated. It was possible to dry the yeast cells in such a way that a substantial proportion of living microorganisms was recovered after reconstitution. Systematic variation of formulation and process parameters showed that the use of protective additives is essential and that the outlet temperature determines the survival rate. The subsequent compression of the spray-dried yeast reduced viability and survival could hardly be improved by the addition of excipients, but the tabletability of spray-dried yeast protectant particles was quite good. For the first time, loss of viability during compaction of spray-dried microorganisms was correlated with the specific densification, allowing a deeper understanding of the mechanism of cell inactivation during tableting.


Subject(s)
Saccharomyces cerevisiae , Spray Drying , Humans , Temperature , Excipients , Powders
2.
Eur J Pharm Biopharm ; 188: 161-169, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207944

ABSTRACT

As tablets are convenient to administer to patients, ensure safe dosing and allow cost-effective production on a large scale, they are the favored dosage form for numerous active pharmaceutical ingredients but also for the administration of viable probiotic microorganisms. Granules with viable yeast cells (Saccharomyces cerevisiae) formed by fluidized bed granulation with dicalcium phosphate (DCP), lactose (LAC) or microcrystalline cellulose (MCC) as carrier materials were tableted using a compaction simulator. Besides the compression stress, the compression speed was systematically studied by varying consolidation time and dwell time. The microbial survival as well as physical properties of the tablets, e.g., porosity and tensile strength, were determined. Higher compression stresses result in lower porosities. While on the one hand this has a detrimental effect on microbial survival (due to increased pressure and shear stress during particle rearrangement / densification), on the other hand it results in higher tensile strengths. At the same compression stress, a prolonged dwell time resulted in lower porosity and thus in lower survival rates but higher tensile strength. Against that, consolidation time showed no significant influence on the considered tablet quality attributes. Since changes of the tensile strength related survival rate were negligible (due to opposite but balancing dependence on porosity), high production speeds could be used for tableting of these granules without additional loss of viability, as long as tablets with the same tensile strength are produced.


Subject(s)
Excipients , Humans , Kinetics , Tablets/chemistry , Excipients/chemistry , Tensile Strength , Porosity
3.
Eur J Pharm Biopharm ; 187: 57-67, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080323

ABSTRACT

Tablets are the favored dosage form for numerous active pharmaceutical ingredients, among others because they are easy to take, ensure safe dosing and allow cost-effective production on a large scale. This dosage form is also frequently chosen for the administration of viable probiotic microorganisms. Saccharomyces cerevisiae cells granulated in a fluidized bed process, with dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials, were tableted using a compaction simulator, varying the compression stress. The tablets were analyzed regarding physical properties, e.g., porosity and tensile strength, as well as microbial survival. Carrier material and compression stress showed a significant influence on survival rate and physical tablet properties. The dependencies were related to material specific deformation characteristics and linked to mechanistic approaches to explain the different sensitivities.


Subject(s)
Excipients , Tablets/chemistry , Excipients/chemistry , Tensile Strength
4.
Pharmaceutics ; 15(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36986745

ABSTRACT

The administration of living microorganisms is of special interest, with regard to probiotic microorganisms providing health benefits to the patient. Effective dosage forms require the preservation of microbial viability until administration. Storage stability can be improved by drying, and the tablet is an especially attractive final solid dosage form due to its ease of administration and its good patient compliance. In this study, drying of the yeast Saccharomyces cerevisiae via fluidized bed spray granulation is investigated, as the probiotic Saccharomyces boulardii is a variety of it. Fluidized bed granulation enables faster drying than lyophilization on the one hand and lower temperatures than spray drying on the other hand, which are the two predominantly used techniques for life-sustaining drying of microorganisms. Yeast cell suspensions enriched with protective additives were sprayed onto the carrier particles of common tableting excipients, namely, dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC). Different protectants, such as mono-, di-, oligo- and polysaccharides, but also skimmed milk powder and one alditol, were tested; as they themselves, or chemically similar molecules, are known from other drying technologies to stabilize biological structures such as cell membranes, and thus, improve survival during dehydration. With the combined use of trehalose and skimmed milk powder, survival rates were 300 times higher than without the use of protective additives. In addition to these formulation aspects, the influence of process parameters such as inlet temperature and spray rate were considered. The granulated products were characterized regarding their particle size distribution, moisture content and the viability of the yeast cells. It has been shown that thermal stress on the microorganisms is especially critical, which can be reduced, for example, by reducing the inlet temperature or increasing the spray rate; however, formulation parameters such as cell concentration also influenced survival. The results were used to specify the influencing factors on the survival of microorganisms during fluidized bed granulation and to derive their linkages. Granules based on the three different carrier materials were tableted and the survival of the microorganisms was evaluated and linked to the tablet tensile strength achieved. Using LAC enabled the highest survival of the microorganisms throughout the considered process chain.

5.
Pharmaceutics ; 12(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952192

ABSTRACT

Today, probiotics are predominantly used in liquid or semi-solid functionalized foods, showing a rapid loss of cell viability. Due to the increasing spread of antibiotic resistance, probiotics are promising in pharmaceutical development because of their antimicrobial effects. This increases the formulation requirements, e.g., the need for an enhanced shelf life that is achieved by drying, mainly by lyophilization. For oral administration, the process chain for production of tablets containing microorganisms is of high interest and, thus, was investigated in this study. Lyophilization as an initial process step showed low cell survival of only 12.8%. However, the addition of cryoprotectants enabled survival rates up to 42.9%. Subsequently, the dried cells were gently milled. This powder was tableted directly or after mixing with excipients microcrystalline cellulose, dicalcium phosphate or lactose. Survival rates during tableting varied between 1.4% and 24.1%, depending on the formulation and the applied compaction stress. More detailed analysis of the tablet properties showed advantages of excipients in respect of cell survival and tablet mechanical strength. Maximum overall survival rate along the complete manufacturing process was >5%, enabling doses of 6 × 108 colony forming units per gram (CFU gtotal-1), including cryoprotectants and excipients.

6.
Eng Life Sci ; 19(1): 4-12, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32624950

ABSTRACT

Bienzymatic production of laminaribiose from sucrose and glucose was combined with adsorption on zeolite BEA to introduce a first capture and purification step. Downstream processing including washing and desorption steps was characterized and optimized on a milliliter scale in batch mode. Results were then transferred to a packed bed system for enzymatic production and adsorption where the influence of adsorbent particle diameter on purity and productivity was evaluated. Finally, a continuous enzymatic production of laminaribiose was conducted over 10 days. The subsequent downstream processing of the loaded zeolites led to purities of over 0.5 gLaminaribiose gsugar -1 in the desorbate with a total productivity of 5.6 mgLaminaribiose Lenzyme bed -1 h-1 without the use of recycles.

7.
Bioprocess Biosyst Eng ; 40(9): 1399-1410, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28601941

ABSTRACT

A hybrid-immobilization method was developed to improve the long-term stability of laminaribiose phosphorylase immobilized on epoxy supports Sepabeads EC-EP/S. Entrapment in chitosan retained all of the enzyme activity depending on the amount of entrapped solid materials and increased half-life by a factor of 10-94.4 h. No enzyme activity loss was determined during 12 times reuse. The immobilization method is also applicable to sucrose phosphorylase immobilized on Sepabeads EC-EP/S. Up to 31.9 g/L laminaribiose were produced in bienzymatic batch experiments with reaction-integrated product separation by adsorption on zeolites.


Subject(s)
Chitosan/chemistry , Disaccharides/chemistry , Enzymes, Immobilized/chemistry , Glucosyltransferases/chemistry , Enzyme Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...