Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166810, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37689209

ABSTRACT

During soil recolonization by macrofauna in areas previously defaunated by industrial pollution, non-typical humus forms are produced. Given that the evidence of zoogenic activity cessation with increased forest litter depth in these humus forms, we tested the hypothesis that the lower organic layers are more toxic than the upper ones. The studies were conducted in the southern taiga, near the Middle Ural Copper Smelter (Revda city, Russia), in spruce-fir and birch forests. We investigated the series of degraded humus forms at different recovery stages, including those without signs of regradation, as well as at the initial and advanced recovery stages. In the organic layers, each of which were 1-2 cm thick and 6-8 cm in total, we measured the following parameters: pH(water), total acidity, the content of exchangeable Ca2+ and Mg2+, acid-soluble and exchangeable metals (Cu, Pb, Fe, Cd, and Zn), organic carbon, and total nitrogen. Simultaneously, we diagnosed the degree of zoogenicity of the organic layers following the European morpho-functional classification of humus forms. Concentrations of the metals increased with forest litter depth, reaching a maximum at the boundary between the organic and organic-mineral horizons (the difference exceeded an order of magnitude). In the same direction, the acidity increased, but the saturation of the exchange complex with Ca2+ and Mg2+ decreased. Within a particular forest litter profile, metal concentrations and acidity were lower in the layer with the highest zoogenicity compared to the layer with the lowest zoogenicity. Based on the metals, pH(water), and exchange complex, the accuracy of the predictions of the degree of layer zoogenicity within the OF horizon in the discriminant analysis reached 100 %. These findings suggest that the vertical gradient of toxic burden persisting in the forest litter after pollution cessation can explain the recovery pattern of humus forms in the contaminated areas.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Soil , Metals/analysis , Copper/analysis , Forests , Soil Pollutants/analysis , Water/analysis , Metals, Heavy/analysis
2.
Chemosphere ; 281: 130889, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289602

ABSTRACT

Scientists around the world have long been searching for effective strategies to reduce the bioavailability of metals in contaminated soils. In case of metal-spiked soils, some studies have proposed gypsum as a soil amendment to alleviate metal phytotoxicity. However, for real field-collected soils, evidence on the efficacy of gypsum as a metal phytotoxicity amendment is limited. Therefore, the present study was designed to examine the effect of gypsum on plant growth in soils polluted by a copper smelter. We grew perennial ryegrass on untreated and gypsum-treated soils (at a dose of 3% by weight) under laboratory conditions. We found that gypsum had no effect on alleviating metal phytotoxicity in our soils. We also demonstrated - for the first time - that gypsum increased the concentrations of soluble metals in the soil, enhancing metal uptake by plants. The calcium ions from gypsum displace metals in the soil exchangeable complex; however, the metals do not get immobilized in soils because gypsum is a neutral salt. While our results contrast with the Terrestrial Biotic Ligand Model, that Model has never been tested on real industrially polluted soils but only on metal-spiked soils. Our main conclusion is that gypsum is ineffective in alleviating metal phytotoxicity in real industrially polluted soils and, moreover, its use is inappropriate as a soil remediation method, because it increases the environmental hazard rather than reducing it. Our study is the very first attempt to recognize that gypsum is a hazardous material when used to ameliorate soils polluted by metals.


Subject(s)
Metals, Heavy , Soil Pollutants , Calcium Sulfate , Environmental Pollution , Metals , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...