Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(19): 18747-18757, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37748108

ABSTRACT

MXenes are a large family of two-dimensional materials with a general formula Mn+1XnTz, where M is a transition metal, X = C and/or N, and Tz represents surface functional groups. MXenes are synthesized by etching A-elements from layered MAX phases with a composition of Mn+1AXn. As over 20 different chemical elements were shown to form A-layers in various MAX phases, we propose that they can provide an abundant source of very diverse MXene-based materials. The general strategy for A-modified MXenes relies on the synthesis of Mn+1A'1-xA″xXn MAX phase, in which the higher reactivity of the A'-element compared to that of A″ enables its selective etching, resulting in A″-modified Mn+1XnTz. In general, the A″-element could modify the interlayer spaces of MXene flakes in a form of metallic or oxide species, depending on its chemical identity and synthetic conditions. We demonstrate this strategy by synthesizing Sn-modified Ti3C2Tz MXene from the Ti3Al0.75Sn0.25C2 MAX phase, which was used as a model system. Although the incorporation of Sn in the A-layer of Ti3AlC2 decreases the MAX phase reactivity, we developed an etching procedure to completely remove Al and produce Sn-modified Ti3C2Tz MXene. The resulting MXene sheets were of very high quality and exhibited improved environmental stability, which we attribute to the effect of a uniform Sn modification. Finally, we demonstrate a peculiar electrostatic expansion of Sn-modified Ti3C2Tz accordions, which may find interesting applications in MXene-based nano-electromechanical systems. Overall, these results demonstrate that in addition to different combinations of M and X elements in MAX phases, an A-layer also provides opportunities for the synthesis of MXene-based materials.

2.
Nanoscale ; 15(3): 1248-1259, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36541680

ABSTRACT

MXenes, two-dimensional transition metal carbides, nitrides, and carbonitrides, are known for their exceptional electronic and mechanical properties. Yet, the experimental efforts toward the realization of MXene-based nanoelectromechanical systems (NEMS) combining electrical and mechanical functionalities of MXenes at the nanoscale remain very limited. Here, we demonstrate a high-yield fabrication of the electromechanical devices based on individual suspended monolayer MXene flakes. We employed Ti3C2Tx, the most popular MXene material to date, that can be produced as high-quality micrometer-scale monolayer flakes with a high electrical conductivity of over 10 000 S cm-1 and a high effective Young's modulus of about 330 GPa. These Ti3C2Tx flakes can be transferred over prefabricated trenches in a Si/Si3N4 substrate at a high yield, potentially enabling fabrication of hundreds of electromechanical devices based on suspended MXene monolayers. We demonstrate very clean, uniform, and well-stretched membranes with different dimensions, with Ti3C2Tx flakes suspended over trenches with gaps ranging from 200 nm to 2 µm. The resulting Ti3C2Tx monolayer membranes were electrostatically actuated, while their vertical displacement was monitored using a tip of an atomic force microscope (AFM). The devices reliably responded to the electrostatic actuation in ambient conditions over multiple cycles and with different measurement parameters, such as AC frequency, AC voltage amplitude, and AFM tip loading force. The demonstration of the high-yield fabrication of working electromechanical devices based on suspended Ti3C2Tx MXene membranes at the ultimate monolayer limit paves the way for the future exploration of the potential of MXenes for NEMS applications.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708471

ABSTRACT

Materials from a large family of transition metal trichalcogenides (TMTCs) attract considerable attention because of their potential applications in electronics, optoelectronics and energy storage, but information on their toxicity is lacking. In this study, we investigated the toxicity of ZrS3, a prominent TMTC material, toward photoluminescent E. coli bacteria in a bioluminescence test. We found that freshly prepared ZrS3 suspensions in physiological saline solution with concentrations as high as 1 g/L did not exhibit any toxic effects on the bacteria. However, ZrS3 suspensions that were stored for 24 h prior to the bioluminescence tests were very toxic to the bacteria and inhibited their emission, even at concentrations down to 0.001 g/L. We explain these observations by the aqueous hydrolysis of ZrS3, which resulted in the formation of ZrOx on the surface of ZrS3 particles and the release of toxic H2S. The formation of ZrOx was confirmed by the XPS analysis, while the characteristic H2S smell was noticeable for the 24 h suspensions. This study demonstrates that while ZrS3 appears to be intrinsically nontoxic to photoluminescent E. coli bacteria, it may exhibit high toxicity in aqueous media. The results of this study can likely be extended to other transition metal chalcogenides, as their toxicity in aqueous solutions may also increase over time due to hydrolysis and the formation of H2S. The results of this study also demonstrate that since many systems involving nanomaterials are unstable and evolve over time in various ways, their toxicity may evolve as well, which should be considered for relevant toxicity tests.

4.
ACS Appl Mater Interfaces ; 12(6): 7392-7402, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32011111

ABSTRACT

Despite the recent advances in bottom-up synthesis of different kinds of atomically precise graphene nanoribbons (GNRs) with very diverse physical properties, the translation of these GNRs into electronic devices remains challenging. Among other factors, the electronic characterization of GNRs is hampered by their complex synthesis that often requires custom-made organic precursors and the need for their transfer to dielectric substrates compatible with the conventional device fabrication procedures. In this paper, we demonstrate that uniform electrically conductive GNR films can be grown on arbitrary high-temperature-resistant substrates, such as metals, Si/SiO2, or silica glasses, by a simple chemical vapor deposition (CVD) approach based on thermal decomposition of commercially available perylenetetracarboxylic dianhydride molecules. The results of spectroscopic and microscopic characterization of the CVD-grown films were consistent with the formation of oxygen-terminated N = 5 armchair GNRs. The CVD-grown nanoribbon films exhibited an ambipolar electric field effect and low on-off ratios, which were in agreement with the predicted metallic properties of N = 5 armchair GNRs, and remarkable gas sensing properties to a variety of volatile organic compounds (VOCs). We fabricated a GNR-based electronic nose system that could reliably recognize VOCs from different chemical classes including alcohols (methanol, ethanol, and isopropanol) and amines (n-butylamine, diethylamine, and triethylamine). The simplicity of the described CVD approach and its compatibility with the conventional device fabrication procedures, as well as the demonstrated sensitivity of the GNR devices to a variety of VOCs, warrant further investigation of CVD-grown nanoribbons for sensing applications.

5.
Nanomaterials (Basel) ; 9(10)2019 Oct 13.
Article in English | MEDLINE | ID: mdl-31614934

ABSTRACT

Toxicity of reduced graphene oxide (rGO) has been a topic of multiple studies and was shown to depend on a variety of characteristics of rGO and biological objects of interest. In this paper, we demonstrate that when studying the same dispersions of rGO and fluorescent Escherichia coli (E. coli) bacteria, the outcome of nanotoxicity experiments also depends on the type of culture medium. We show that rGO inhibits the growth of bacteria in a nutrition medium but shows little effect on the behavior of E. coli in a physiological saline solution. The observed effects of rGO on E. coli in different media could be at least partially rationalized through the adsorption of bacteria and nutrients on the dispersed rGO sheets, which is likely mediated via hydrogen bonding. We also found that the interaction between rGO and E. coli is medium-dependent, and in physiological saline solutions they form stable flocculate structures that were not observed in nutrition media. Furthermore, the aggregation of rGO and E. coli in saline media was observed regardless of whether the bacteria were alive or dead. Filtration of the aggregate suspensions led to nearly complete removal of bacteria from filtered liquids, which highlights the potential of rGO for the filtration and separation of biological contaminants, regardless of whether they include live or dead microorganisms.

6.
Nano Lett ; 19(5): 3194-3198, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30943040

ABSTRACT

We introduce a concept of programmable ferroelectric devices composed of two-dimensional (2D) and ferroelectric (FE) materials. It enables precise modulation of the in-plane conductivity of a 2D channel material through nanoengineering FE domains with out-of-plane polarization. The functionality of these new devices has been demonstrated using field-effect transistors (FETs) fabricated with monolayer molybdenum disulfide (MoS2) channels on the Pb(Zr,Ti)O3 substrates. Using piezoresponse force microscopy (PFM), we show that local switching of FE polarization by a conductive probe can be used to tune the conductivity of the MoS2 channel. Specifically, patterning of the nanoscale domains with downward polarization creates conductive paths in a resistive MoS2 channel so that the conductivity of an FET is determined by the number and length of the paths connecting source and drain electrodes. In addition to the device programmability, we demonstrate the device ON/OFF cyclic endurance by successive writing and erasing of conductive paths in a MoS2 channel. These findings may inspire the development of advanced energy-efficient programmable synaptic devices based on a combination of 2D and FE materials.

7.
ACS Nano ; 12(12): 12713-12720, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30499656

ABSTRACT

Quasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than the exfoliation of conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS3 whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS3 chains. Theoretical calculations show that the energies required for breaking weak interactions between the two-dimensional (2D) layers and between 1D chains within the layers are comparable and, in turn, are considerably lower than those required for breaking the covalent bonds within the chains. We also emulated macroscopic exfoliation experiments on the nanoscale by applying a local shear force to TiS3 crystals in different crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM experiments, it was possible to slide the 2D TiS3 layers relative to each other as well as to remove selected 1D chains from the layers. We systematically studied the exfoliated TiS3 crystals by Raman spectroscopy and identified the Raman peaks whose spectral positions were most dependent on the crystals' thickness. These results could be used to distinguish between TiS3 crystals with thickness ranging from one to about seven monolayers. The conclusions established in this study for the exfoliated TiS3 crystals can be extended to a variety of transition metal trichalcogenide materials as well as other quasi-1D crystals. The possibility of exfoliation of TiS3 into narrow (few-nm wide) crystals with smooth edges could be important for the future realization of miniature device channels with reduced edge scattering of charge carriers.

8.
Nanotechnology ; 29(50): 505707, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30311602

ABSTRACT

We report on the chemical vapor deposition synthesis of MoO2 nanoplatelets by sublimation of MoO3 and its reduction in a hydrogen atmosphere at 750 °C. When grown on Si/SiO2 substrates, the platelets primarily assume a rhomboidal shape and have thicknesses ranging from several to tens of nm. The morphology of MoO2 crystals was found to depend on the chemical nature of substrates. MoO2 platelets on Si/SiO2 were characterized by a number of microscopic and spectroscopic techniques, and the electrical measurements revealed the metallic nature of their conductivity averaging at 2400 ± 1000 S cm-1. Raman spectroscopy of MoO2 platelets on graphene indicates their strong hole injection property. Small thickness, planar morphology, high chemical stability and metallic conductivity of ultrathin MoO2 platelets make them potentially interesting for integration different other two-dimensional materials in a variety of electronic structures and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...