Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612018

ABSTRACT

This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a dispersion of 10-16 nm was used. The research into nanocomposites under the influence of elevated temperatures was carried out using the "Thermoscan-2" derivatograph. Complex studies of thermophysical properties were carried out, according to the results of which the optimal content of nanofiller (0.050 pts.wt.) was determined. At the same time, this particular polymer was characterized by the following properties: temperature of the beginning of mass loss-T0 = 624.9 K; final temperature of mass loss-Tf = 718.7 K; relative mass loss-εm = 60.3%. Research into the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds. It was proved that the maximum value of activation energy (170.1 kJ/mol) is characterized by nanocomposites with a content of nanodispersed condensed carbon of 0.050 pts.wt., which indicates the thermal stability of the polymer.

2.
Polymers (Basel) ; 14(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015529

ABSTRACT

The impact of fillers in the epoxy oligomer on the test culture of the marine ecosystem was investigated. The content of additive-biocides-was selected based on the complex research using STAT-GRAPHICS® Centurion XVI. The ecotoxicity of composite surfaces was determined in model systems using methods which are standard in eco-microbiology. The microorganism was identified by studying morphological, cultural, biochemical, and antigenic properties. Studies of the structure and the microrelief of the surfaces of composite materials were conducted using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy. Based on comprehensive research, it was established that the composition of oxytetracycline with content of q = 1.5 wt% and nanosilver with a content of q = 0.075 wt% per 100 wt% of the DER-331 oligomer and 10 parts by the mass of the TETA hardener ensures the formation of a porous nano-heterogeneous structure of the coating, which leads to the acceleration of the release of silver ions from the surface of the polymer. The rational content of the complex additives of biocides ensures adhesion to the cell wall of bacteria with subsequent penetration into it and subsequent change to the cell membrane, its death, and, therefore, the suppression of the fouling process of metal structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...