Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cells ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38994986

ABSTRACT

Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors , Polyamines , Humans , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Polyamines/metabolism , Cell Line, Tumor , Spermine/metabolism , Spermine/analogs & derivatives , Acetylation , A549 Cells
2.
Biochemistry (Mosc) ; 88(6): 823-841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37748878

ABSTRACT

Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.


Subject(s)
Neoplasms , Oncolytic Viruses , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Immunotherapy , Gene Editing , Genome, Viral , Neoplasms/therapy
3.
Nano Lett ; 23(15): 7143-7149, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523664

ABSTRACT

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with in situ electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric Cu2OSeO3. We show that electric fields not only stabilize the hexagonally packed skyrmion lattices in the entire sample in a hysteretic manner but also induce the rotation of their reciprocal vector discretely by 30°. The nonvolatile and energy-efficient skyrmion lattice control by electric fields demonstrated in this work provides an important foundation for designing skyrmion-based qubits and memory devices.

4.
Mol Ther Oncolytics ; 29: 158-168, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37387795

ABSTRACT

We developed recombinant variants of oncolytic vaccinia virus LIVP strain expressing interleukin-15 (IL-15) or its receptor subunit alpha (IL-15Rα) to stimulate IL-15-dependent immune cells. We evaluated their oncolytic activity either alone or in combination with each other in vitro and in vivo using the murine CT26 colon carcinoma and 4T1 breast carcinoma models. We demonstrated that the admixture of these recombinant variants could promote the generation of the IL-15/IL-15Rα complex. In vitro studies indicated that 4T1 breast cancer cells were more susceptible to the developed recombinant viruses. In vivo studies showed significant survival benefits and tumor regression in 4T1 breast cancer syngeneic mice that received a combination of LIVP-IL15-RFP with LIVP-IL15Ra-RFP. Histological analysis showed recruited lymphocytes at the tumor region, while no harmful effects to the liver or spleen of the animals were detected. Evaluating tumor-infiltrated lymphocytes represented profound activation of cytotoxic T cells and macrophages in mice receiving combination therapy. Thus, our experiments showed superior oncolytic effectiveness of simultaneous injection of LIVP-IL15-RFP and LIVP-IL15Ra-RFP in breast cancer-bearing mice. The combined therapy by these recombinant variants represents a potent and versatile approach for developing new immunotherapies for breast cancer.

5.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37112810

ABSTRACT

Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host's immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors.


Subject(s)
Melanoma, Experimental , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Vaccinia virus/genetics , Flagellin/genetics , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor
6.
Cancers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36765590

ABSTRACT

Severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and rapidly caused a pandemic that led to the death of >6 million people due to hypercoagulation and cytokine storm. In addition, SARS-CoV-2 triggers a wide array of pathologies, including liver dysfunction and neurological disorders. It remains unclear if these events are due to direct infection of the respective tissues or result from systemic inflammation. Here, we explored the possible infection of hepatic and CNS cell lines by SARS-CoV-2. We show that even moderate expression levels of the angiotensin-converting enzyme 2 (ACE2) are sufficient for productive infection. SARS-CoV-2 infects hepatoma Huh7.5 and HepG2 cells but not non-transformed liver progenitor or hepatocyte/cholangiocyte-like HepaRG cells. However, exposure to the virus causes partial dedifferentiation of HepaRG cells. SARS-CoV-2 can also establish efficient replication in some low-passage, high-grade glioblastoma cell lines. In contrast, embryonal primary astrocytes or neuroblastoma cells did not support replication of the virus. Glioblastoma cell permissiveness is associated with defects in interferon production. Overall, these results suggest that liver dysfunction during COVID-19 is not due to infection of these tissues by SARS-CoV-2. Furthermore, tumors may potentially serve as reservoirs for the virus during infection.

7.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362256

ABSTRACT

The genome editing approach using the components of the CRISPR/Cas system has found wide application in molecular biology, fundamental medicine and genetic engineering. A promising method is to increase the efficacy and specificity of CRISPR/Cas-based genome editing systems by modifying their components. Here, we designed and chemically synthesized guide RNAs (crRNA, tracrRNA and sgRNA) containing modified nucleotides (2'-O-methyl, 2'-fluoro, LNA-locked nucleic acid) or deoxyribonucleotides in certain positions. We compared their resistance to nuclease digestion and examined the DNA cleavage efficacy of the CRISPR/Cas9 system guided by these modified guide RNAs. The replacement of ribonucleotides with 2'-fluoro modified or LNA nucleotides increased the lifetime of the crRNAs, while other types of modification did not change their nuclease resistance. Modification of crRNA or tracrRNA preserved the efficacy of the CRISPR/Cas9 system. Otherwise, the CRISPR/Cas9 systems with modified sgRNA showed a remarkable loss of DNA cleavage efficacy. The kinetic constant of DNA cleavage was higher for the system with 2'-fluoro modified crRNA. The 2'-modification of crRNA also decreased the off-target effect upon in vitro dsDNA cleavage.


Subject(s)
CRISPR-Cas Systems , RNA, Small Untranslated , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing/methods , Nucleotides , RNA, Small Untranslated/genetics
8.
Cancers (Basel) ; 14(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428704

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.

9.
Int J Mol Sci ; 23(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35563635

ABSTRACT

Cancer cell lines responded differentially to type I interferon treatment in models of oncolytic therapy using vesicular stomatitis virus (VSV). Two opposite cases were considered in this study, glioblastoma DBTRG-05MG and osteosarcoma HOS cell lines exhibiting resistance and sensitivity to VSV after the treatment, respectively. Type I interferon responses were compared for these cell lines by integrative analysis of the transcriptome, proteome, and RNA editome to identify molecular factors determining differential effects observed. Adenosine-to-inosine RNA editing was equally induced in both cell lines. However, transcriptome analysis showed that the number of differentially expressed genes was much higher in DBTRG-05MG with a specific enrichment in inflammatory proteins. Further, it was found that two genes, EGFR and HER2, were overexpressed in HOS cells compared with DBTRG-05MG, supporting recent reports that EGF receptor signaling attenuates interferon responses via HER2 co-receptor activity. Accordingly, combined treatment of cells with EGF receptor inhibitors such as gefitinib and type I interferon increases the resistance of sensitive cell lines to VSV. Moreover, sensitive cell lines had increased levels of HER2 protein compared with non-sensitive DBTRG-05MG. Presumably, the level of this protein expression in tumor cells might be a predictive biomarker of their resistance to oncolytic viral therapy.


Subject(s)
Interferon Type I , Oncolytic Virotherapy , Oncolytic Viruses , Vesicular Stomatitis , Animals , Cell Line, Tumor , ErbB Receptors/genetics , Interferon Type I/metabolism , Oncolytic Viruses/physiology , Vesicular stomatitis Indiana virus/genetics , Vesiculovirus/physiology
10.
Stem Cells Dev ; 31(1-2): 9-17, 2022 01.
Article in English | MEDLINE | ID: mdl-34847755

ABSTRACT

Posttraumatic spinal cord cysts are difficult to treat with medication and surgery. Gene-cell therapy is a promising area of treatment for such patients. However, optimal gene-cell construct for this therapy has not been developed. We investigated the therapeutic efficiency of human olfactory ensheathing cells (OECs) transduced by adenoviral vector encoding the mature form of brain-derived neurotrophic factor (mBDNF) in spinal cord cysts. The adenoviral vectors Ad5/35-CAG-mBDNF and Ad5/35-CAG-Fluc were constructed. Spinal cysts were modeled in female Wistar rats. We selected animals at the early and intermediate stages of recovery with scores to 13 according to the Basso, Beattie and Bresnahan (BBB) scale. The efficiency of therapy was evaluated by BBB tests. No cytotoxicity was detected using the Resazurin/AlamarBlue assay for both vectors at multiplicity of infection (MOIs) of 1, 5, and 25. There was an increase in the proliferation of cells treated with Ad5/35-CAG-mBDNF at MOIs of 5 and 25. The hind limb mobility after the transplantation of Ad5/35-CAG-mBDNF- and Ad5/35-CAG-Fluc-transduced human OECs and nontransduced OECs had approximately the same tendency to improve. Cyst reduction was observed with the transplantation of all the samples. Although Ad5/35-CAG-mBDNF-transduced OECs had high BDNF expression levels in vitro, these cells lacked positive effect in vivo because they did not exhibit significant effect concerning functional test when comparing the groups that received the same numbers of OECs. The therapeutic efficiency of transduced OECs appears to be due to the cell component. The autological and tissue-specific human OECs are promising for the personalized cell therapy. It is extremely important to test new gene-cell constructs based on these cells for further clinical use.


Subject(s)
Cysts , Spinal Cord Injuries , Animals , Cell Transplantation , Cell- and Tissue-Based Therapy , Cysts/metabolism , Cysts/therapy , Female , Humans , Nerve Regeneration , Olfactory Bulb , Rats , Rats, Wistar , Spinal Cord , Spinal Cord Injuries/metabolism
11.
Cancers (Basel) ; 13(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34771433

ABSTRACT

Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons' (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs' portraits with titration-based measurements of cell sensitivity to a panel of viruses, the "strength" of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses.

12.
Materials (Basel) ; 12(14)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311076

ABSTRACT

We calculated the electron susceptibility of rare-earth tritelluride compounds RTe3 as a function of temperature, wave vector, and electron-dispersion parameters. Comparison of the results obtained with the available experimental data on the transition temperature and on the wave vector of a charge-density wave in these compounds allowed us to predict the values and evolution of electron-dispersion parameters with the variation of the atomic number of rare-earth elements (R).

SELECTION OF CITATIONS
SEARCH DETAIL
...