Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 27(11): 1441-1451.e7, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32726587

ABSTRACT

Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery. This proof-of-principle study targets PPI between linear ubiquitin chains and NEMO UBAN domain, which activates NF-κB signaling. Using phage display, we generated ubiquitin variants that bind to the functional UBAN epitope with high affinity, act as competitive inhibitors, and structurally maintain the existing PPI interface. When utilized in assay development, variants enable generation of robust cell-based assays for chemical screening. Top compounds identified using this approach directly bind to UBAN and dampen NF-κB signaling. This study illustrates advantages of integrating protein engineering and chemical screening in hit identification, a development that we anticipate will have wide application in drug discovery.


Subject(s)
Biological Products/pharmacology , Drug Discovery , NF-kappa B/antagonists & inhibitors , Protein Engineering , Ubiquitin/antagonists & inhibitors , Biological Products/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , NF-kappa B/chemistry , NF-kappa B/metabolism , Protein Binding/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Ubiquitin/chemistry , Ubiquitin/metabolism
2.
Front Cell Dev Biol ; 8: 208, 2020.
Article in English | MEDLINE | ID: mdl-32296703

ABSTRACT

Short linear motifs (SLiMs) located in disordered regions of multidomain proteins are important for the organization of protein-protein interaction networks. By dynamic association with their binding partners, SLiMs enable assembly of multiprotein complexes, pivotal for the regulation of various aspects of cell biology in higher organisms. Despite their importance, there is a paucity of molecular tools to study SLiMs of endogenous proteins in live cells. LC3 interacting regions (LIRs), being quintessential for orchestrating diverse stages of autophagy, are a prominent example of SLiMs and mediate binding to the ubiquitin-like LC3/GABARAP family of proteins. The role of LIRs ranges from the posttranslational processing of their binding partners at early stages of autophagy to the binding of selective autophagy receptors (SARs) to the autophagosome. In order to generate tools to study LIRs in cells, we engineered high affinity binders of LIR motifs of three archetypical SARs: OPTN, p62, and NDP52. In an array of in vitro and cellular assays, the engineered binders were shown to have greatly improved affinity and specificity when compared with the endogenous LC3/GABARAP family of proteins, thus providing a unique possibility for modulating LIR interactions in living systems. We exploited these novel tools to study the impact of LIR inhibition on the fitness and the responsiveness to cytarabine treatment of THP-1 cells - a model for studying acute myeloid leukemia (AML). Our results demonstrate that inhibition of LIR of a single autophagy receptor is insufficient to sensitize the cells to cytarabine, while simultaneous inhibition of three LIR motifs in three distinct SARs reduces the IC50 of the chemotherapeutic.

3.
Nat Biotechnol ; 36(1): 95-102, 2018 01.
Article in English | MEDLINE | ID: mdl-29176614

ABSTRACT

Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR). However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ). We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells, blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , Gene Expression Regulation/genetics , Humans , Mice , Recombinational DNA Repair/genetics , Tumor Suppressor p53-Binding Protein 1/antagonists & inhibitors
4.
Science ; 339(6119): 590-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23287719

ABSTRACT

The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.


Subject(s)
Combinatorial Chemistry Techniques , Endopeptidases/metabolism , Protease Inhibitors/isolation & purification , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Ubiquitination/drug effects , Amino Acid Sequence , Conserved Sequence , Drug Design , Endopeptidases/chemistry , HEK293 Cells , Humans , Molecular Sequence Data , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Protein Structure, Secondary , Small Molecule Libraries , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin Thiolesterase/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...