Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3726, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698000

ABSTRACT

Despite considerable advances in flood forecasting during recent decades, state-of-the-art, operational flood early warning systems (FEWS) need to be equipped with near-real-time inundation and impact forecasts and their associated uncertainties. High-resolution, impact-based flood forecasts provide insightful information for better-informed decisions and tailored emergency actions. Valuable information can now be provided to local authorities for risk-based decision-making by utilising high-resolution lead-time maps and potential impacts to buildings and infrastructures. Here, we demonstrate a comprehensive floodplain inundation hindcast of the 2021 European Summer Flood illustrating these possibilities for better disaster preparedness, offering a 17-hour lead time for informed and advisable actions.

2.
Sci Rep ; 10(1): 19387, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168927

ABSTRACT

Recently, flood risk assessments have been extended to national and continental scales. Most of these assessments assume homogeneous scenarios, i.e. the regional risk estimate is obtained by summing up the local estimates, whereas each local damage value has the same probability of exceedance. This homogeneity assumption ignores the spatial variability in the flood generation processes. Here, we develop a multi-site, extreme value statistical model for 379 catchments across Europe, generate synthetic flood time series which consider the spatial correlation between flood peaks in all catchments, and compute corresponding economic damages. We find that the homogeneity assumption overestimates the 200-year flood damage, a benchmark indicator for the insurance industry, by 139%, 188% and 246% for the United Kingdom (UK), Germany and Europe, respectively. Our study demonstrates the importance of considering the spatial dependence patterns, particularly of extremes, in large-scale risk assessments.

3.
Geophys Res Lett ; 47(7): e2020GL087464, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-34937957

ABSTRACT

The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.

4.
WIREs Water ; 6(4): e1353, 2019.
Article in English | MEDLINE | ID: mdl-31423301

ABSTRACT

A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space-time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under:Science of Water > Water ExtremesScience of Water > Hydrological ProcessesScience of Water > Methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...