Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 42(2): 189-199, 2021 02.
Article in English | MEDLINE | ID: mdl-33252167

ABSTRACT

Inherited retinal degenerations (IRDs) are a group of genetically heterogeneous conditions with a broad phenotypic heterogeneity. Here, we report detection and validation of the underlying cause of progressive retinal degeneration in a nuclear family of European descent with a single affected individual. Whole genome sequencing of the proband and her unaffected sibling identified a novel intron 8 donor splice site variant (c.1296 + 1G>A) and a novel 731 base pair deletion encompassing exon 9 (Chr2:g.112751488_112752218 del) resulting in c.1297_1451del; p.K433_G484fsTer3 in the Mer tyrosine kinase protooncogene (MERTK), which is highly expressed in the retinal pigment epithelium (RPE). The proband carried both variants in the heterozygous state, which segregated with disease in the pedigree. These MERTK variants are predicted to result in the defective splicing of exon 8 and loss of exon 9 respectively. To evaluate the impact of these novel variants, peripheral blood mononuclear cells of the proband and her parents were reprogrammed to humaninduced pluripotent stem cell (hiPSC) lines, which were subsequently differentiated to hiPSC-RPE. Analysis of the proband's hiPSC-RPE revealed the absence of both MERTK transcript and its respective protein as well as abnormal phagocytosis when compared with the parental hiPSC-RPE. In summary, whole genome sequencing identified novel compound heterozygous variants in MERTK as the underlying cause of progressive retinal degeneration in a simplex case. Further, analysis using an hiPSC-RPE model established the functional impact of novel MERTK mutations and revealed the potential mechanism underlying pathology in the proband.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Female , Humans , Leukocytes, Mononuclear/pathology , Mutation , Phagocytosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Whole Genome Sequencing , c-Mer Tyrosine Kinase/genetics
2.
Aging Cell ; 18(6): e13011, 2019 12.
Article in English | MEDLINE | ID: mdl-31385385

ABSTRACT

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular degeneration characterized by the formation of sub-retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L-ORD results from mutations in the C1q-tumor necrosis factor-5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L-ORD pathology, we used a human cDNA library yeast two-hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM-Ch) from wild-type (Wt), heterozygous S163R Ctrp5 mutation knock-in (Ctrp5S163R/wt ), and homozygous knock-in (Ctrp5S163R/S163R ) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C-terminal PDZ-binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R-CTRP5 protein also binds to HTRA1 but is resistant to HTRA1-mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM-Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L-ORD pathology.


Subject(s)
Collagen/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Mutation , Retinal Degeneration/genetics , Animals , Cellular Senescence/genetics , Collagen/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Humans , Mass Spectrometry , Mice , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
3.
Hum Gene Ther ; 30(5): 632-650, 2019 05.
Article in English | MEDLINE | ID: mdl-30499344

ABSTRACT

Patients harboring homozygous c.498_499insC mutations in MFRP demonstrate hyperopia, microphthalmia, retinitis pigmentosa, retinal pigment epithelial atrophy, variable degrees of foveal edema, and optic disc drusen. The disease phenotype is variable, however, with some patients maintaining good central vision and cone function till late in the disease. A knock-in mouse model with the c.498_499insC mutation in Mfrp (Mfrp KI/KI) was developed to understand the effects of these mutations in the retina. The model shares many of the features of human clinical disease, including reduced axial length, hyperopia, retinal degeneration, retinal pigment epithelial atrophy, and decreased electrophysiological responses. In addition, the eyes of these mice had a significantly greater refractive error (p < 0.01) when compared to age-matched wild-type control animals. Administration of recombinant adeno-associated virus-mediated Mfrp gene therapy significantly prevented thinning from retinal neurodegeneration (p < 0.005) and preserved retinal electrophysiology (p < 0.001) when treated eyes were compared to contralateral sham-treated control eyes. The Mfrp KI/KI mice will serve as a useful tool to model human disease and point to a potential gene therapeutic approach for patients with preserved vision and electrophysiological responses in MFRP-related retinopathy.


Subject(s)
Genetic Predisposition to Disease , Genetic Therapy , Membrane Proteins/genetics , Retinal Diseases/genetics , Animals , Biomarkers , Dependovirus/genetics , Disease Models, Animal , Electroretinography , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Immunohistochemistry , Mice , Mice, Knockout , Phenotype , Retinal Diseases/diagnosis , Retinal Pigment Epithelium/metabolism , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...