Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452277

ABSTRACT

BACKGROUND: Biology-guided radiotherapy (BgRT) is a novel technology that uses positron emission tomography (PET) data to direct radiotherapy delivery in real-time. BgRT enables the precise delivery of radiation doses based on the PET signals emanating from PET-avid tumors on the fly. In this way, BgRT uniquely utilizes radiotracer uptake as a biological beacon for controlling and adjusting dose delivery in real-time to account for target motion. PURPOSE: To demonstrate using real-time PET for BgRT delivery on the RefleXion X1 radiotherapy machine. The X1 radiotherapy machine is a rotating ring-gantry radiotherapy system that generates a nominal 6MV photon beam, PET, and computed tomography (CT) components. The system utilizes emitted photons from PET-avid targets to deliver effective radiation beamlets or pulses to the tumor in real-time. METHODS: This study demonstrated a real-time PET BgRT delivery experiment under three scenarios. These scenarios included BgRT delivering to (S1 ) a static target in a homogeneous and heterogeneous environment, (S2 ) a static target with a hot avoidance structure and partial PET-avid target, and (S3 ) a moving target. The first step was to create stereotactic body radiotherapy (SBRT) and BgRT plans (offline PET data supported) using RefleXion's custom-built treatment planning system (TPS). Additionally, to create a BgRT plan using PET-guided delivery, the targets were filled with 18F-Fluorodeoxyglucose (FDG), which represents a tumor/target, that is, PET-avid. The background materials were created in the insert with homogeneous water medium (for S1 ) and heterogeneous water with styrofoam mesh medium. A heterogeneous background medium simulated soft tissue surrounding the tumor. The treatment plan was then delivered to the experimental setups using a pre-commercial version of the X1 machine. As a final step, the dosimetric accuracy for S1 and S2 was assessed using the ArcCheck analysis tool-the gamma criteria of 3%/3 mm. For S3 , the delivery dose was quantified using EBT-XD radiochromic film. The accuracy criteria were based on coverage, where 100% of the clinical target volume (CTV) receives at least 97% of the prescription dose, and the maximum dose in the CTV was ≤130% of the maximum planned dose (97 % ≤ CTV ≤ 130%). RESULTS: For the S1, both SBRT and BgRT deliveries had gamma pass rates greater than 95% (SBRT range: 96.9%-100%, BgRT range: 95.2%-98.9%), while in S2 , the gamma pass rate was 98% for SBRT and between 95.2% and 98.9% for BgRT plan delivering. For S3 , both SBRT and BgRT motion deliveries met CTV dose coverage requirements, with BgRT plans delivering a very high dose to the target. The CTV dose ranges were (a) SBRT:100.4%-120.4%, and (b) BgRT: 121.3%-139.9%. CONCLUSIONS: This phantom-based study demonstrated that PET signals from PET-avid tumors can be utilized to direct real-time dose delivery to the tumor accurately, which is comparable to the dosimetric accuracy of SBRT. Furthermore, BgRT delivered a PET-signal controlled dose to the moving target, equivalent to the dose distribution to the static target. A future study will compare the performance of BgRT with conventional image-guided radiotherapy.

2.
Front Oncol ; 12: 921473, 2022.
Article in English | MEDLINE | ID: mdl-36313653

ABSTRACT

Purpose: We investigated the feasibility of biology-guided radiotherapy (BgRT), a technique that utilizes real-time positron emission imaging to minimize tumor motion uncertainties, to spare nearby organs at risk. Methods: Volumetric modulated arc therapy (VMAT), intensity-modulated proton (IMPT) therapy, and BgRT plans were created for a paratracheal node recurrence (case 1; 60 Gy in 10 fractions) and a primary peripheral left upper lobe adenocarcinoma (case 2; 50 Gy in four fractions). Results: For case 1, BgRT produced lower bronchus V40 values compared to VMAT and IMPT. For case 2, total lung V20 was lower in the BgRT case compared to VMAT and IMPT. Conclusions: BgRT has the potential to reduce the radiation dose to proximal critical structures but requires further detailed investigation.

3.
Br J Radiol ; 94(1117): 20200873, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33112685

ABSTRACT

The emerging biological understanding of metastatic cancer and proof-of-concept clinical trials suggest that debulking all gross disease holds great promise for improving patient outcomes. However, ablation of multiple targets with conventional external beam radiotherapy systems is burdensome, which limits investigation and utilization of complete metastatic ablation in the majority of patients with advanced disease. To overcome this logistical hurdle, technical innovation is necessary. Biology-guided radiotherapy (BgRT) is a new external beam radiotherapy delivery modality combining positron emission tomography-computed tomography (PET-CT) with a 6 MV linear accelerator. The key innovation is continuous response of the linear accelerator to outgoing tumor PET emissions with beamlets of radiotherapy at subsecond latency. This allows the deposited dose to track tumors in real time. Multiple new hardware and algorithmic advances further facilitate this low-latency feedback process. By transforming tumors into their own fiducials after intravenous injection of a radiotracer, BgRT has the potential to enable complete metastatic ablation in a manner efficient for a single patient and scalable to entire populations with metastatic disease. Future trends may further enhance the utility of BgRT in the clinic as this technology dovetails with other innovations in radiotherapy, including novel dose painting and fractionation schemes, radiomics, and new radiotracers.


Subject(s)
Neoplasms, Second Primary/radiotherapy , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Dose Fractionation, Radiation , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...