Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(19): 5428-5431, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001920

ABSTRACT

We show that waveguide sensors can enable a quantitative characterization of coronavirus spike glycoprotein-host-receptor binding-the process whereby coronaviruses enter human cells, causing disease. We demonstrate that such sensors can help quantify and eventually understand kinetic and thermodynamic properties of viruses that control their affinity to targeted cells, which is known to significantly vary in the course of virus evolution, e.g., from SARS-CoV to SARS-CoV-2, making the development of virus-specific drugs and vaccine difficult. With the binding rate constants and thermodynamic parameters as suggested by the latest SARS-CoV-2 research, optical sensors of SARS-CoV-2 spike protein-receptor binding may be within sight.


Subject(s)
Betacoronavirus , Biosensing Techniques , Coronavirus Infections , Optics and Photonics/instrumentation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19 , Humans , Protein Binding/physiology , SARS-CoV-2
2.
Opt Lett ; 43(22): 5693-5696, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30439930

ABSTRACT

We demonstrate free-beam spectral self-compression of ~100-GW femtosecond laser pulses due to self-phase modulation (SPM) in a transparent dielectric. While all the earlier studies of SPM-induced spectral narrowing have been performed using optical fibers, experiments and simulations presented in this Letter show that this type of spectral transformation can be implemented as a part of a full three-dimensional field-waveform dynamics and can be extended to peak powers ∼105 times higher than the critical power of self-focusing. With a properly chosen initial chirp, spectral self-compression is accompanied by pulse compression, providing spectral-temporal mode self-compression as a whole.

3.
Opt Lett ; 37(24): 5163-5, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23258039

ABSTRACT

Polarization instability (PI) of ultrashort light pulses, giving rise to vectorial supercontinuum generation, is demonstrated using a subwavelength-core, highly birefringent, normally dispersive optical fiber. The evolution of ultrashort pulses in the regime of PI is shown to radically differ from polarization-instability dynamics of cw fields and longer laser pulses. As the peak power of the laser field decreases along the propagation path due to dispersion-induced pulse stretching, the Poincaré-sphere map of field dynamics is shown to evolve from the behavior typical of PI in the highly nonlinear regime toward the beating dynamics of uncoupled polarization modes, characteristic of low field intensities and cw fields.

4.
Opt Lett ; 36(10): 1788-90, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21593891

ABSTRACT

Slow-light effects induced by stimulated Raman scattering in polymer waveguides on a printed circuit board are shown to enable a widely tunable delay of broadband optical signals, suggesting an advantageous platform for optical information processing and ultrafast optical waveform transformation.

5.
Opt Lett ; 36(4): 508-10, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21326438

ABSTRACT

Light-assisted ionization accompanying coherent anti-Stokes Raman scattering (CARS) of ultrashort laser pulses in brain tissue is shown to manifest itself in a detectable blueshift of the anti-Stokes signal. This blueshift can serve as an indicator of ionization processes in CARS-based neuroimaging.


Subject(s)
Computer Simulation , Spectrum Analysis, Raman , Tomography, Optical Coherence/methods , Brain/ultrastructure , Image Interpretation, Computer-Assisted , Lasers
6.
Opt Lett ; 34(21): 3373-5, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19881598

ABSTRACT

Dual-cladding photonic crystal fibers (PCFs) with two zero-dispersion points are used to enhance the two-photon excited luminescence (TPL) response from fluorescent protein biomarkers and neuron activity reporters in dye-cell experiments and in in vivo work on transgenic mice and tadpoles. The soliton transmission of ultrashort pulses through a PCF suppresses dispersion-induced temporal pulse spreading, maintaining a high level of field intensity needed for efficient TPL excitation. The soliton self-frequency shift, stabilized against laser power fluctuations by a specific PCF dispersion design, is employed to accurately match the wavelength of the soliton PCF output with the two-photon absorption spectrum of dye or fluorescent protein biomarker molecules, enhancing their TPL response and allowing the laser damage of biotissues to be avoided.


Subject(s)
Luminescent Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Photons , Absorption , Animals , Biomarkers/metabolism , Lasers , Mice , Microscopy, Electron, Scanning , Spectrometry, Fluorescence
7.
Phys Rev Lett ; 103(3): 033901, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19659279

ABSTRACT

We show how time-resolved coherent anti-Stokes Raman scattering can be used to identify interfering pathways in the relaxation dynamics of autoionizing transients in many-electron systems, on femto- and attosecond time scales. For coherent population of many states, autoionizing wave-packet dynamics is resolved. We identify bound-bound, continuum-bound, and bound-continuum-bound contributions and show that they leave distinct features in the total coherent anti-Stokes Raman scattering signal.

8.
Opt Express ; 16(19): 14987-96, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18795035

ABSTRACT

Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.


Subject(s)
Computer-Aided Design , Crystallization/methods , Fiber Optic Technology/instrumentation , Models, Theoretical , Air , Computer Simulation , Equipment Design , Equipment Failure Analysis , Photons , Porosity
9.
Opt Lett ; 33(15): 1723-5, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18670516

ABSTRACT

Self-steepening of ultrashort light pulses is shown to reduce the soliton self-frequency shift (SSFS) induced by the Raman effect in an optical fiber. We derive an analytical expression for the SSFS that conserves the number of photons and allows the SSFS to be calculated for arbitrary frequency profiles of fiber dispersion and Raman gain without a numerical solution of the pulse evolution equation. The accuracy of this analytical approach to SSFS calculation is tested by numerical simulations based on the generalized nonlinear Schrödinger equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...