Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Eur J Pharmacol ; 908: 174369, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34310913

ABSTRACT

Mir-133a-3p is the most abundant myocardial microRNA. The impact of mir-133a-3p on cardiac electrophysiology is poorly explored. In this study, we investigated the effects of mir-133a-3p on the main ionic currents critical for action potential (AP) generation and electrical activity of the heart. We used conventional ECG, sharp microelectrodes and patch-clamp to clarify a role of mir-133a-3p in normal cardiac electrophysiology in rats after in vivo and in vitro transfection. Mir-133a-3p caused no changes to pacemaker APs and automaticity in the sinoatrial node. No significant changes in heart rate (HR) were observed in vivo; however, miR transfection facilitated HR increase in response to ß-adrenergic stimulation. Mir-133a-3p induced repolarization abnormalities in the atrial working myocardium and the L-type calcium current (ICa,L) was significantly increased. The main repolarization currents, including the transient outward (Ito), ultra-rapid (IK,ur), and inward rectifier (IK1) remained unaffected in atrial cardiomyocytes. Mir-133a-3p affected both ICa,L and Ito in ventricular cardiomyocytes. Systemic administration of mir-133a-3p induced QT-interval prolongation. Bioinformatic analysis revealed protein phosphatase 2 (PPP2CA/B) and Kcnd3 (encoding Kv4.3 channels generating Ito) as the main miR-133a-3p targets in the heart. No changes in mRNA expression of Cacna1c (encoding Cav1.2 channels generating ICa,L) and Kcnd3 were seen in mir-133a-3p treated rats. However, the expression of Ppp2cA, encoding PPP2CA, and Kcnip2 encoding KChIP2, a Kv4.3 regulatory protein, were significantly decreased. The accumulation of mir-133a-3p in cardiac myocytes causes chamber-specific electrophysiological changes. The suppression of PPP2CA, involved in adrenergic signal transduction, and Kchip2 may indirectly mediate mir-133a-3p-induced augmentation of ICa,L and attenuation of Ito.


Subject(s)
Myocardium , Animals , Heart Ventricles , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...