Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34947554

ABSTRACT

The development of efficient plasmonic nanostructures with controlled and reproducible surface-enhanced Raman spectroscopy (SERS) signals is an important task for the evolution of ultrasensitive sensor-related methods. One of the methods to improving the characteristics of nanostructures is the development of hybrid structures that include several types of materials. Here, we experimentally investigate ultrathin gold films (3-9 nm) near the percolation threshold on Si/Au/SiO2 and Si/Au/SiO2/graphene multilayer structures. The occurring field enhanced (FE) effects were characterized by a recording of SERS signal from Crystal Violet dye. In this geometry, the overall FE principally benefits from the combination of two mechanisms. The first one is associated with plasmon excitation in Au clusters located closest to each other. The second is due to the gap plasmons' excitation in a thin dielectric layer between the mirror and corrugated gold layers. Experimentally obtained SERS signals from sandwiched structures fabricated with Au film of 100 nm as a reflector, dielectric SiO2 spacer of 50 nm and ultrathin gold atop could reach SERS enhancements of up to around seven times relative to gold films near the percolation threshold deposited on a standard glass substrate. The close contiguity of the analyte to graphene and nanostructured Au efficiently quenches the fluorescent background of the model compound. The obtained result shows that the strategy of combining ultrathin nano-island gold films near the percolation threshold with gap plasmon resonances is promising for the design of highly efficient SERS substrates for potential applications in ultrasensitive Raman detection.

2.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071775

ABSTRACT

Two-dimensional layers of transition-metal dichalcogenides (TMDs) have been widely studied owing to their exciting potential for applications in advanced electronic and optoelectronic devices. Typically, monolayers of TMDs are produced either by mechanical exfoliation or chemical vapor deposition (CVD). While the former produces high-quality flakes with a size limited to a few micrometers, the latter gives large-area layers but with a nonuniform surface resulting from multiple defects and randomly oriented domains. The use of epitaxy growth can produce continuous, crystalline and uniform films with fewer defects. Here, we present a comprehensive study of the optical and structural properties of a single layer of MoS2 synthesized by molecular beam epitaxy (MBE) on a sapphire substrate. For optical characterization, we performed spectroscopic ellipsometry over a broad spectral range (from 250 to 1700 nm) under variable incident angles. The structural quality was assessed by optical microscopy, atomic force microscopy, scanning electron microscopy, and Raman spectroscopy through which we were able to confirm that our sample contains a single-atomic layer of MoS2 with a low number of defects. Raman and photoluminescence spectroscopies revealed that MBE-synthesized MoS2 layers exhibit a two-times higher quantum yield of photoluminescence along with lower photobleaching compared to CVD-grown MoS2, thus making it an attractive candidate for photonic applications.

3.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066979

ABSTRACT

Graphene is a promising building block material for developing novel photonic and optoelectronic devices. Here, we report a comprehensive experimental study of chemical-vapor deposited (CVD) monolayer graphene's optical properties on three different substrates for ultraviolet, visible, and near-infrared spectral ranges (from 240 to 1000 nm). Importantly, our ellipsometric measurements are free from the assumptions of additional nanometer-thick layers of water or other media. This issue is critical for practical applications since otherwise, these additional layers must be included in the design models of various graphene photonic, plasmonic, and optoelectronic devices. We observe a slight difference (not exceeding 5%) in the optical constants of graphene on different substrates. Further, the optical constants reported here are very close to those of graphite, which hints on their applicability to multilayer graphene structures. This work provides reliable data on monolayer graphene's optical properties, which should be useful for modeling and designing photonic devices with graphene.

4.
Nanomaterials (Basel) ; 10(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963496

ABSTRACT

Graphene is a promising platform for surface-enhanced Raman spectroscopy (SERS)-active substrates, primarily due to the possibility of quenching photoluminescence and fluorescence. Here we study ultrathin gold films near the percolation threshold fabricated by electron-beam deposition on monolayer CVD graphene. The advantages of such hybrid graphene/gold substrates for surface-enhanced Raman spectroscopy are discussed in comparison with conventional substrates without the graphene layer. The percolation threshold is determined by independent measurements of the sheet resistance and effective dielectric constant by spectroscopic ellipsometry. The surface morphology of the ultrathin gold films is analyzed by the use of scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the thicknesses of the films in addition to the quartz-crystal mass-thickness sensor are also measured by AFM. We experimentally demonstrate that the maximum SERS signal is observed near and slightly below the percolation threshold. In this case, the region of maximum enhancement of the SERS signal can be determined using the figure of merit (FOM), which is the ratio of the real and imaginary parts of the effective dielectric permittivity of the films. SERS measurements on hybrid graphene/gold substrates with the dye Crystal Violet show an enhancement factor of ~105 and also demonstrate the ability of graphene to quench photoluminescence by an average of ~60%.

5.
Sensors (Basel) ; 20(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905897

ABSTRACT

Plasmonic chemical and biological sensors offer significant advantages such as really compact sizes and extremely high sensitivity. Biosensors based on plasmonic waveguides and resonators are some of the most attractive candidates for mobile and wearable devices. However, high losses in the metal and complicated schemes for practical implementation make it challenging to find the optimal configuration of a compact plasmon biosensor. Here, we propose a novel plasmonic refractive index sensor based on a metal strip waveguide placed under a waveguide-based racetrack ring resonator made of the same metal. This scheme guarantees effective coupling between the waveguide and resonator and low loss light transmittance through the long-range waveguide. The proposed device can be easily fabricated (e.g., using optical lithography) and integrated with materials like graphene oxide for providing adsorption of the biomolecules on the sensitive part of the optical elements. To analyze the properties of the designed sensing system, we performed numerical simulations along with some analytical estimations. There is one other interesting general feature of this sensing scheme that is worth pointing out before looking at its details. The sensitivity of the considered device can be significantly increased by surrounding the resonator with media of slightly different refractive indices, which allows sensitivity to reach a value of more than 1 µm per refractive index unit.


Subject(s)
Biosensing Techniques/instrumentation , Computer Simulation , Limit of Detection , Refractometry
6.
Nanomaterials (Basel) ; 8(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558333

ABSTRACT

Graphene-metal hybrid nanostructures have attracted considerable attention due to their potential applications in nanophotonics and optoelectronics. The output characteristics of devices based on such nanostructures largely depend on the properties of the metals. Here, we study the optical, electrical and structural properties of continuous thin gold and copper films grown by electron beam evaporation on monolayer graphene transferred onto silicon dioxide substrates. We find that the presence of graphene has a significant effect on optical losses and electrical resistance, both for thin gold and copper films. Furthermore, the growth kinetics of gold and copper films vary greatly; in particular, we found here a significant dependence of the properties of thin copper films on the deposition rate, unlike gold films. Our work provides new data on the optical properties of gold and copper, which should be considered in modeling and designing devices with graphene-metal nanolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...