Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 159(2-3): 303-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466456

ABSTRACT

Photosystem II (PSII) is one of the main pigment-protein complexes of photosynthesis which is highly sensitive to unfavorable environmental factors. The heterogeneity of PSII properties is essential for the resistance of autotrophic organisms to stress factors. Assessment of the PSII heterogeneity may be used in environmental monitoring for on-line detection of contamination of the environment. We propose an approach to assess PSII oxygen-evolving complex and light-harvesting antenna heterogeneity that is based on mathematical modeling of the shape of chlorophyll a fluorescence rise of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated samples. The hierarchy of characteristic times of the processes considered in the model makes it possible to reduce the model to a system of three ordinary differential equations. The analytic solution of the reduced three-state model is expressed as a sum of two exponential functions, and it exactly reproduces the solution of the complete system within the time range from microseconds to hundreds of milliseconds. The combination of several such models for reaction centers with different properties made it possible to use it as an instrument to study PSII heterogeneity. PSII heterogeneity was studied for Chlamydomonas at different intensities of actinic light, for Scenedesmus under short-term heating, and for Chlorella grown in nitrate-enriched and nitrate-depleted media.


Subject(s)
Chlorella , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Chlorophyll A , Diuron , Chlorophyll , Chlorella/metabolism , Nitrates , Photosynthesis , Models, Theoretical , Light-Harvesting Protein Complexes/metabolism , Light
2.
Photochem Photobiol ; 99(4): 1106-1114, 2023.
Article in English | MEDLINE | ID: mdl-36562220

ABSTRACT

The effect of the toxicant 2,3',4,4',6-pentachlorobiphenyl (PCB-119) on the growth, chlorophyll content, and PSII activity of C. sorokiniana cells was investigated. A strong negative effect of the toxicant was observed at PCB concentration of 0.05 µg mL-1 , when culture growth ceased, chlorophyll strongly bleached, and cell death occurred. The use of original highly sensitive fluorimeter to measure three types of high-resolution chlorophyll fluorescence kinetics allowed us to detect an initial dramatic decrease in the activity of primary photosynthetic reactions, followed by their almost complete recovery at the end of the incubation period when most cells were dead. The study of the distribution of individual cells in culture in terms of Fv /Fm parameter, which reflects the quantum yield of PSII photochemistry, revealed the existence of 2-3% of cells retaining high Fv /Fm (>0.7) in the presence of the toxicant. The treated cultures were able to resume growth after prolonged incubation in fresh medium. The high sensitivity fluorescence methods used made it possible to identify stress-resistant cells which maintain high photosynthetic activity in the presence of lethal doses of toxic substances; these cells provide recovery of the population after stress.


Subject(s)
Chlorella , Microalgae , Microalgae/chemistry , Microalgae/metabolism , Chlorella/metabolism , Photosynthesis , Chlorophyll/metabolism , Acclimatization
3.
J Phycol ; 55(4): 840-857, 2019 08.
Article in English | MEDLINE | ID: mdl-30913303

ABSTRACT

Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2-nonanone and 2-undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB , electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2-nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.


Subject(s)
Photosynthesis , Photosystem II Protein Complex , Chlorophyll , Electron Transport , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL
...