Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144998

ABSTRACT

Antireflection and light-trapping coatings are important parts of photovoltaic architectures, which enable the reduction of parasitic optical losses, and therefore increase the power conversion efficiency (PCE). Here, we propose a novel approach to enhance the efficiency of perovskite solar cells using a light-trapping electrode (LTE) with non-reciprocal optical transmission, consisting of a perforated metal film covered with a densely packed array of nanospheres. Our LTE combines charge collection and light trapping, and it can replace classical transparent conducting oxides (TCOs) such as ITO or FTO, providing better optical transmission and conductivity. One of the most promising applications of our original LTE is the optimization of efficient bifacial perovskite solar cells. We demonstrate that with our LTE, the short-circuit current density and fill factor are improved for both front and back illumination of the solar cells. Thus, we observe an 11% improvement in the light absorption for the monofacial PSCs, and a 15% for the bifacial PSCs. The best theoretical results of efficiency for our PSCs are 27.9% (monofacial) and 33.4% (bifacial). Our study opens new prospects for the further efficiency enhancement for perovskite solar cells.

2.
ACS Appl Mater Interfaces ; 13(7): 8606-8619, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33588526

ABSTRACT

We demonstrate an improvement in the performance of organic photovoltaic (OPV) systems based on small molecules by ionic gating via controlled reversible n-doping of multi-wall carbon nanotubes (MWCNTs) coated on fullerene electron transport layers (ETLs): C60 and C70. Such electric double-layer charging (EDLC) doping, achieved by ionic liquid (IL) charging, allows tuning of the electronic concentration in MWCNTs and the fullerene planar acceptor layers, increasing it by orders of magnitude. This leads to the decrease of the series and increase of the shunt resistances of OPVs and allows use of thick (up to 200 nm) ETLs, increasing the durability of OPVs. Two stages of OPV enhancement are described upon the increase of gating bias Vg: at small (or even zero) Vg, the extended interface of ILs and porous transparent MWCNTs is charged by gating, and the fullerene charge collector is significantly improved, becoming an ohmic contact. This changes the S-shaped J-V curve via improving the electron collection by an n-doped MWCNT cathode with an ohmic interfacial contact. The J-V curves further improve at higher gating bias Vg due to the increase of the Fermi level and decrease of the MWCNT work function. At the next qualitative stage, the acceptor fullerene layer becomes n-doped by electron injection from MWCNTs while ions of ILs penetrate into the fullerene. At this step, the internal built-in field is created within OPV, which helps in exciton dissociation and charge separation/transport, increasing further the Jsc and the fill factor. The ionic gating concept demonstrated here for most simple classical planar small-molecule OPV cells can be potentially applied to more complex highly efficient hybrid devices, such as perovskite photovoltaic with an ETL or a hole transport layer, providing a new way to tune their properties via controllable and reversible interfacial doping of charge collectors and transport layers.

3.
Nanomaterials (Basel) ; 11(1)2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33375394

ABSTRACT

The integration of nanoparticles (NPs) into functional materials is a powerful tool for the smart engineering of their physical properties. If properly designed and optimized, NPs possess unique optical, electrical, quantum, and other effects that will improve the efficiency of optoelectronic devices. Here, we propose a novel approach for the enhancement of perovskite light-emitting diodes (PeLEDs) based on electronic band structure deformation by core-shell NPs forming a metal-oxide-semiconductor (MOS) structure with an Au core and SiO2 shell located in the perovskite layer. The presence of the MOS interface enables favorable charge distribution in the active layer through the formation of hole transporting channels. For the PeLED design, we consider integration of the core-shell NPs in the realistic numerical model. Using our verified model, we show that, compared with the bare structure, the incorporation of NPs increases the radiative recombination rate of PeLED by several orders of magnitude. It is intended that this study will open new perspectives for further efficiency enhancement of perovskite-based optoelectronic devices with NPs.

4.
Nanoscale ; 7(2): 765-70, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25431164

ABSTRACT

We perform complex investigation of the distribution of electromagnetic fields in the vicinity of an array of silver nanoantennas, which can operate as an efficient light trapping structure in the visible spectral range. In theory, this array should support unusual collective modes that possess an advantageous distribution of local electric fields, ensuring both strong field localization beneath nanoantennas and a low level of optical losses inside the metal. Using an aperture-type near-field scanning optical microscope (NSOM), we obtain near-field patterns that show excellent agreement with the NSOM signal, directly reconstructed from rigorous numerical simulations using an approach based on the electromagnetic reciprocity theorem. The agreement between theory and experiment allows us to claim the first-time experimental verification of the existence of collective modes with such properties in an array of silver nanoantennas. The confirmation of this physical phenomenon opens the door to a new class of light-trapping structures for photovoltaics.

5.
Nat Commun ; 5: 3226, 2014.
Article in English | MEDLINE | ID: mdl-24526135

ABSTRACT

The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...