Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Biol Res ; 50(1): 39, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29221464

ABSTRACT

BACKGROUD: Ferredoxin NADP(H) oxidoreductases (EC 1.18.1.2) (FNR) are flavoenzymes present in photosynthetic organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS soluble protein acceptor of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a structural analysis of the complex FNR/Fd. METHODS: The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phycobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5'RACE was used to confirm the absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by comparative modeling and a model for the complex FNR: Fd by docking. RESULTS: The kinetic analysis shows KMNADPH of 12.5 M and a k cat of 86 s-1, data consistent with the parameters determined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent. Transcriptome analysis of Gch revealed the presence of two Fd; FdL and FdS , sharing the motif CX5CX2CX29X. The analysis indicated that the most probable partner for FNR is FdS. CONCLUSION: The interaction model produced, was consistent with functional properties reported for FNR in plants leaves, and opens the possibilities for research in other rhodophyta of commercial interest.


Subject(s)
Ferredoxin-NADP Reductase/chemistry , Ferredoxins/metabolism , Gracilaria/enzymology , Amino Acid Sequence , Electrophoresis, Polyacrylamide Gel , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/pharmacokinetics , Gracilaria/chemistry , Oxidation-Reduction , Photosynthesis/physiology
2.
PLoS One ; 12(5): e0177540, 2017.
Article in English | MEDLINE | ID: mdl-28542288

ABSTRACT

Phycobilisomes (PBS) are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch) are Phycobiliproteins (PBPs), Phycoerythrin (PE), and Phycocyanin (PC) in the rods, while Allophycocyanin (APC) is found in the core, and linker proteins (L). The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and ß subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and ß18. As for the linkers, Linker core (LC) and Linker core membrane (LCM) are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system.


Subject(s)
Gracilaria/cytology , Phycobilisomes/chemistry , Protein Multimerization , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Gracilaria/genetics , Gracilaria/metabolism , Phycobilisomes/metabolism , Phycocyanin/chemistry , Phycocyanin/genetics , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Transcription, Genetic
3.
Mar Genomics ; 31: 17-19, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27843115

ABSTRACT

This work reports the results of the Illumina RNA-Seq of a wild population of female haploid plants of Gracilaria chilensis (Bird et al., 1986) (Rhodophyta, Gigartinalis). Most transcripts were de novo assembled in 12,331 contigs with an average length of 1756bp, showing that 96.64% of the sequences were annotated with known proteins. In particular, the identification of linker proteins of phycobilisomes (PBS) is reported. Linker proteins have primary been identified in cyanobacteria but the information available about them in eukaryotic red alga is not complete, and this is the first report in G. chilensis. This resource will also provide the basis for the study of metabolic pathways related to polysaccharide production.


Subject(s)
Algal Proteins/metabolism , Gracilaria/metabolism , Phycobilisomes/metabolism , Polysaccharides/metabolism , Transcriptome , Chile , Gene Expression Profiling , Metabolic Networks and Pathways , Seaweed/metabolism
4.
Biol. Res ; 50: 39, 2017. tab, graf
Article in English | LILACS | ID: biblio-950886

ABSTRACT

BACKGROUND: Ferredoxin NADP(H) oxidoreductases (EC 1.18.1.2) (FNR) are flavoenzymes present in photosynthetic organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS soluble protein acceptor of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a structural analysis of the complex FNR/Fd. METHODS: The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phycobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5'RACE was used to confirm the absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by comparative modeling and a model for the complex FNR: Fd by docking. RESULTS: The kinetic analysis shows KMNADPH of 12.5 M and a kcat of 86 s-1, data consistent with the parameters determined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent. Transcriptome analysis of Gch revealed the presence of two Fd; FdL and FdS, sharing the motif CX5CX2CX29X. The analysis indicated that the most probable partner for FNR is FdS. CONCLUSION: The interaction model produced, was consistent with functional properties reported for FNR in plants leaves, and opens the possibilities for research in other rhodophyta of commercial interest.


Subject(s)
Gracilaria/enzymology , Ferredoxin-NADP Reductase/chemistry , Ferredoxins/metabolism , Oxidation-Reduction , Photosynthesis/physiology , Amino Acid Sequence , Gracilaria/chemistry , Electrophoresis, Polyacrylamide Gel , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...