Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 30(10): 2064-2073, 2016 10.
Article in English | MEDLINE | ID: mdl-27125308

ABSTRACT

Although NOD-SCID IL2Rγ-/- (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, the expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis chronic myeloid leukemia patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in the expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL+ and MLL-AF9+ leukemias can be studied in detail.


Subject(s)
Bone Marrow/pathology , Disease Models, Animal , Fusion Proteins, bcr-abl , Leukemia, Myeloid, Acute/pathology , Myeloid-Lymphoid Leukemia Protein , Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Humans , Mice , Transplantation, Heterologous
2.
Leukemia ; 25(12): 1825-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21760593

ABSTRACT

In order to identify acute myeloid leukemia (AML) CD34(+)-specific gene expression profiles, mononuclear cells from AML patients (n=46) were sorted into CD34(+) and CD34(-) subfractions, and genome-wide expression analysis was performed using Illumina BeadChip Arrays. AML CD34(+) and CD34(-) gene expression was compared with a large group of normal CD34(+) bone marrow (BM) cells (n=31). Unsupervised hierarchical clustering analysis showed that CD34(+) AML samples belonged to a distinct cluster compared with normal BM and that in 61% of the cases the AML CD34(+) transcriptome did not cluster together with the paired CD34(-) transcriptome. The top 50 of AML CD34(+)-specific genes was selected by comparing the AML CD34(+) transcriptome with the AML CD34(-) and CD34(+) normal BM transcriptomes. Interestingly, for three of these genes, that is, ankyrin repeat domain 28 (ANKRD28), guanine nucleotide binding protein, alpha 15 (GNA15) and UDP-glucose pyrophosphorylase 2 (UGP2), a high transcript level was associated with a significant poorer overall survival (OS) in two independent cohorts (n=163 and n=218) of normal karyotype AML. Importantly, the prognostic value of the continuous transcript levels of ANKRD28 (OS hazard ratio (HR): 1.32, P=0.008), GNA15 (OS HR: 1.22, P=0.033) and UGP2 (OS HR: 1.86, P=0.009) was shown to be independent from the well-known risk factors FLT3-ITD, NPM1c(+) and CEBPA mutation status.


Subject(s)
Antigens, CD34/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Adult , Aged , Aged, 80 and over , Bone Marrow/metabolism , Bone Marrow/pathology , Cells, Cultured , Female , Gene Expression Regulation, Leukemic , Humans , Karyotyping , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Mutation/genetics , Prognosis , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...