Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 12(9): e1005835, 2016 09.
Article in English | MEDLINE | ID: mdl-27606840

ABSTRACT

The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung ß-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.


Subject(s)
Amyloid/ultrastructure , PrPC Proteins/ultrastructure , PrPSc Proteins/ultrastructure , Amyloid/genetics , Animals , Cattle , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Cryoelectron Microscopy , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/pathology , Humans , PrPC Proteins/genetics , PrPSc Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 113(37): 10352-7, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27578865

ABSTRACT

The bacterial flagellar apparatus, which involves ∼40 different proteins, has been a model system for understanding motility and chemotaxis. The bacterial flagellar filament, largely composed of a single protein, flagellin, has been a model for understanding protein assembly. This system has no homology to the eukaryotic flagellum, in which the filament alone, composed of a microtubule-based axoneme, contains more than 400 different proteins. The archaeal flagellar system is simpler still, in some cases having ∼13 different proteins with a single flagellar filament protein. The archaeal flagellar system has no homology to the bacterial one and must have arisen by convergent evolution. However, it has been understood that the N-terminal domain of the archaeal flagellin is a homolog of the N-terminal domain of bacterial type IV pilin, showing once again how proteins can be repurposed in evolution for different functions. Using cryo-EM, we have been able to generate a nearly complete atomic model for a flagellar-like filament of the archaeon Ignicoccus hospitalis from a reconstruction at ∼4-Å resolution. We can now show that the archaeal flagellar filament contains a ß-sandwich, previously seen in the FlaF protein that forms the anchor for the archaeal flagellar filament. In contrast to the bacterial flagellar filament, where the outer globular domains make no contact with each other and are not necessary for either assembly or motility, the archaeal flagellin outer domains make extensive contacts with each other that largely determine the interesting mechanical properties of these filaments, allowing these filaments to flex.


Subject(s)
Archaeal Proteins/chemistry , Evolution, Molecular , Fimbriae Proteins/chemistry , Flagellin/chemistry , Archaea/chemistry , Archaea/genetics , Archaeal Proteins/genetics , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Chemotaxis , Crystallography, X-Ray , Fimbriae Proteins/genetics , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/genetics , Flagellin/genetics , Halobacterium salinarum/chemistry , Halobacterium salinarum/genetics , Immunoglobulin Domains/genetics , Protein Domains/genetics
3.
Cell ; 161(4): 845-57, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25957688

ABSTRACT

Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.


Subject(s)
Protein Biosynthesis , Ribosomes/chemistry , Ribosomes/ultrastructure , Amino Acid Sequence , Cryoelectron Microscopy , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , RNA, Transfer/chemistry , Sequence Alignment , Thermodynamics
4.
Structure ; 23(1): 173-182, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25533486

ABSTRACT

Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Animals , Cryoelectron Microscopy , Models, Molecular , Nucleotides/chemistry , Nucleotides/metabolism , Phosphates/chemistry , Phosphates/metabolism , Protein Multimerization , Protein Structure, Quaternary , Rabbits
5.
Elife ; 32014 May 27.
Article in English | MEDLINE | ID: mdl-24867214

ABSTRACT

The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.


Subject(s)
Albumins/metabolism , Golgi Apparatus/metabolism , alpha 1-Antitrypsin/metabolism , Biological Transport , Computer Simulation , Diffusion , Endoplasmic Reticulum/metabolism , Green Fluorescent Proteins/metabolism , HeLa Cells , Hep G2 Cells , Humans , Light , Microscopy, Confocal , Microscopy, Immunoelectron , Microscopy, Video , Protein Transport
6.
Cell ; 156(6): 1193-1206, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630722

ABSTRACT

Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:


Subject(s)
Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Inflammasomes/chemistry , Amino Acid Sequence , CARD Signaling Adaptor Proteins , Carrier Proteins/metabolism , Cryoelectron Microscopy , DNA-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/ultrastructure , Interleukin-1beta/metabolism , Models, Molecular , Molecular Sequence Data , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins/metabolism , Polymerization , Protein Structure, Tertiary
7.
Chem Commun (Camb) ; 46(33): 6063-5, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20664873

ABSTRACT

The size and shape of a surfactant aggregate could be altered by using supersaturation like in crystal growth, rather than applying common laws that drive surfactant aggregate formation.


Subject(s)
Surface-Active Agents/chemistry , Urea/chemistry , Calorimetry, Differential Scanning , Cryoelectron Microscopy , Crystallization , Hydrogen Bonding , Kinetics , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Surface Properties
8.
J Am Chem Soc ; 131(3): 1222-31, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19113853

ABSTRACT

We report on two diaminotriazine-equipped naphthalene derivatives that bind reversibly to a single-stranded DNA template or "tape-measure molecule" via hydrogen bonding, yielding monodisperse double-stranded DNA hybrids with one strand consisting of a supramolecular naphthalene backbone. These assemblies have been investigated extensively, both experimentally and theoretically. The structure and the templated self-assembly process of the complex have been characterized with UV-vis spectroscopy, circular dichroism spectroscopy, molecular dynamics simulations, cryo-transmission electron microscopy, liquid atomic force microscopy, electrospray ionization mass spectrometry, light scattering, and 1H NMR and infrared spectroscopy. We have found that the DNA hybrid complexes have a right-handed helical arrangement stabilized by pi-pi interactions and hydrogen bonds. The hydrophilic hydroxyl group at the end of the ethylene glycol of the guest molecule suppressed both the nontemplated self-assembly of the naphthalene guest molecules and the further aggregation of the entire DNA hybrid complex. Through the use of a theoretical mass-action model for the templated self-assembly, the host-guest and guest-guest interaction energies were estimated by fitting to the spectroscopic data. The differently estimated values of the interaction energies and thermodynamic parameters vary within experimental error, showing the self-consistency of the model. From the obtained correlation between the positions of the guest molecules bound on the template, we have obtained a qualitative theoretical picture of the way in which the guests are physically distributed on the templates. For short templates, the templates are filled one-by-one, even at moderate fractions of bound sites. For larger templates, the templates first have alternating sequences of filled and empty sections, after which, at large fractions of bound sites, virtually all of the binding sites for all template lengths are filled.


Subject(s)
DNA, Single-Stranded/chemistry , Naphthalenes/chemistry , Circular Dichroism , Cryoelectron Microscopy , DNA, Single-Stranded/ultrastructure , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Models, Molecular , Molecular Conformation , Titrimetry
9.
J Am Chem Soc ; 130(38): 12608-9, 2008 Sep 24.
Article in English | MEDLINE | ID: mdl-18729366

ABSTRACT

The layer-by-layer self-assembly of thin films consisting of alternating layers of DNA and bis-urea nanoribbons prevents diffusion of the components within the film and allows the anchoring of biotinylated molecules through molecular recognition in a predetermined layer of the film. Electron tomography demonstrates with nanometer precision the location of gold-labeled streptavidin bound to the incorporated biotinylated molecules.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Urea/chemistry , Biotin/chemistry , Electron Microscope Tomography/methods , Streptavidin/chemistry , Surface-Active Agents/chemistry
10.
Ultramicroscopy ; 108(11): 1478-83, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18691818

ABSTRACT

Aqueous interfaces are of paramount importance in the study of biological systems as well as in the biomedical sciences. To study these interfaces at the nanometer level it is of interest to develop methods that allow their observation with cryogenic transmission electron microscopy (cryo-TEM). Prevention of dehydration to preserve the "native" state during sample preparation prior to vitrification is often one of the most important parameters to control in cryo-TEM experiments. For the preparation of these types of samples, we felt the need for an extended workspace with temperature and humidity control; a 'glove-box' that seamlessly connects to the vitrification instrument, the Vitrobot. In this paper we describe the use of the glove-box in the 2D and 3D cryo-TEM study of DNA adsorption and calcium carbonate mineralization to Langmuir films. The data presented illustrates the necessity of a humidity-controlled environment to preserve the original "native" state of the monolayer system.


Subject(s)
Calcium Carbonate/chemistry , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/methods , DNA/chemistry , Surface-Active Agents/chemistry , Adsorption , Air , Equipment Design , Humidity , Temperature , Water
11.
Langmuir ; 23(25): 12655-62, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-17973513

ABSTRACT

To investigate the role and importance of nondirectional electrostatic interactions in mineralization, we explored the use of Langmuir monolayers in which the charge density can be tuned using supramolecular interactions. It is demonstrated that, in mixed Langmuir monolayers of bis-ureido surfactants containing oligo(ethylene oxide) and ammonium head groups associated with matching or nonmatching spacers between the two urea groups, the organization is controlled by molecular recognition. These different organizations of the molecules lead to different nucleation behavior in the mineralization of calcium carbonate. The formation of modified calcite and vaterite crystals was induced selectively by different phases of mixed monolayers, and they were characterized by SEM, TEM, and SAED. To understand the influence of the mixed Langmuir monolayers on the crystallization process, we studied the mixtures by means of (pi-A) isotherms and Brewster angle microscopy observations. Infrared reflection-absorption spectroscopy experiments were also performed on Langmuir-Schaefer films. From these results, we conclude that the local organization of the two systems discussed here gives rise to differences in both charge density and flexibility that together determine not only polymorph selection and the nucleation face but also the morphology of the resulting crystals.


Subject(s)
Calcium Carbonate/chemistry , Surface-Active Agents/chemistry , Urea/chemistry , Crystallization , Membranes, Artificial , Molecular Structure , Particle Size , Polyethylene Glycols/chemistry , Quaternary Ammonium Compounds/chemistry , Surface Properties
12.
J Am Chem Soc ; 129(50): 15631-8, 2007 Dec 19.
Article in English | MEDLINE | ID: mdl-18027942

ABSTRACT

We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.


Subject(s)
Dendrimers/chemistry , Water/chemistry , Chloroform/chemistry , Computer Simulation , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Models, Chemical , Molecular Structure , Titrimetry
15.
Tissue Eng ; 13(4): 711-20, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17373893

ABSTRACT

Vascularization is important in wound healing and essential for tissue ingrowth into porous tissue-engineering matrices. Furthermore, peri-implant tissue vascularization is known to be important for the functionality of subcutaneously implanted biosensors (e.g., glucose sensors). As a first exploration of the use of deoxyribonucleic acid (DNA)-based coatings for the optimization of biosensor functionality, this study focused on the effect of DNA-based coatings functionalized with vascular endothelial growth factor (VEGF) on in vitro endothelial cell behavior and vascularization of the peri-implant tissue in vivo. To that end, DNA-based coatings consisting of poly-D-lysine and DNA were functionalized with different amounts of VEGF (25 and 250 ng) and compared to non-coated controls and non-functionalized DNA-based coatings. The results demonstrated the superiority of VEGF-functionalized DNA-based coatings in increasing endothelial cell proliferation and migration in vitro over non-coated controls and non-functionalized DNA-based coatings. In vivo, a significant increase in vascularization of the peri-implant area was observed for VEGF-functionalized DNA-based coatings. Because no dosage-dependent effects were observed, future experiments should focus on optimizing VEGF concentration for this purpose. Additionally, the administration of VEGF in combination with other (pro-angiogenic) factors should be considered.


Subject(s)
DNA/chemistry , Drug Carriers/chemistry , Endothelial Cells/cytology , Endothelial Cells/physiology , Vascular Endothelial Growth Factor A/administration & dosage , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Cell Survival/drug effects , Coated Materials, Biocompatible/administration & dosage , Coated Materials, Biocompatible/chemistry , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Humans , Male , Materials Testing , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/chemistry
16.
Biomaterials ; 27(5): 691-701, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16076484

ABSTRACT

This study describes the fabrication of two types of multilayered coatings onto titanium by electrostatic self-assembly (ESA), using deoxyribosenucleic acid (DNA) as the anionic polyelectrolyte and poly-d-lysine (PDL) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Both coatings were characterized using UV-vis spectrophotometry, atomic force microscopy (AFM), X-ray photospectroscopy (XPS), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and for the amount of DNA immobilized. The mutagenicity of the constituents of the coatings was assessed. Titanium substrates with or without multilayered DNA-coatings were used in cell culture experiments to study cell proliferation, viability, and morphology. Results of UV-vis spectrophotometry, AFM, and contact angle measurements clearly indicated the progressive build-up of the multilayered coatings. Furthermore, AFM and XPS data showed a more uniform build-up and morphology of [PDL/DNA]-coatings compared to [PAH/DNA]-coatings. DNA-immobilization into both coatings was linear, and approximated 3microg/cm(2) into each double-layer. The surface morphology of both types of multilayered DNA-coatings showed elevations in the nanoscale range. No mutagenic effects of DNA, PDL, or PAH were detected, and cell viability and morphology were not affected by the presence of either type of multilayered DNA-coating. Still, the results of the proliferation assay revealed an increased proliferation of primary rat dermal fibroblasts on both types of multilayered DNA-coatings compared to non-coated controls. The biocompatibility and functionalization of the coatings produced here, will be assessed in subsequent cell culture and animal-implantation studies.


Subject(s)
Biocompatible Materials/chemistry , DNA/chemistry , Animals , Cell Proliferation , Cells, Cultured , DNA/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Molecular Structure , Rats , Rats, Wistar , Spectrum Analysis , Static Electricity , Titanium/chemistry
18.
J Am Chem Soc ; 127(48): 16768-9, 2005 Dec 07.
Article in English | MEDLINE | ID: mdl-16316206

ABSTRACT

Here we present a surfactant molecule (1) containing an ammonium headgroup, in which a bis-ureido group is incorporated in its hydrocarbon chain. Due to strong hydrogen bonding interactions, 1 forms well-defined highly ordered ribbon-like aggregates in water. Moreover, we demonstrate that these ribbons can be functionalized via a modular approach through molecular recognition of other bis-urea containing molecules. The dye disperse orange and biotin were coupled to matching bis-ureido groups and incorporated into the ribbon structure. The anchoring of different functionalities in a modular approach proved to be possible using the molecular recognition capabilities of the bis-ureido moiety, thereby opening possibilities to a wide range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...