Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 4(1): 47-60, 1993 Jul.
Article in English | MEDLINE | ID: mdl-8220474

ABSTRACT

The membrane-bound flavoprotein NADPH:cytochrome P-450 (cytochrome c) reductase, that functions in electron transfer to cytochrome P-450 monooxygenases, was purified from a cell suspension culture of the higher plant Catharanthus roseus. Anti-serum raised against the purified protein was found to inhibit NADPH:cytochrome c reductase activity as well as the activities of the cytochrome P-450 enzymes geraniol 10-hydroxylase and trans-cinnamate 4-hydroxylase, which are involved in alkaloid biosynthesis and phenylpropanoid biosynthesis, respectively. Immunoscreening of a C. roseus cDNA expression library resulted in the isolation of a partial NADPH: cytochrome P-450 reductase cDNA clone, which was identified on the basis of sequence homology with NADPH:cytochrome P-450 reductases from yeast and animal species. The identify of the cDNA was confirmed by expression in Escherichia coli as a functional protein capable of NADPH-dependent reduction of cytochrome c and neotetrazolium, two in vitro substrates for the reductase. The N-terminal sequence of the reductase, which was not present in the cDNA clone, was determined from a genomic NADPH: cytochrome P-450 reductase clone. It was demonstrated that the reductase probably is encoded by a single copy gene. A sequence comparison of this plant NADPH:cytochrome P-450 reductase with the corresponding enzymes from yeast and animals species showed that functional domains involved in binding of the cofactors FMN, FAD and NADPH are highly conserved between all kingdoms. In C. roseus cell cultures a rapid increase of the reductase steady state mRNA level was observed after the addition of fungal elicitor preparations that are known to induce cytochrome P-450-dependent biosynthetic pathways.


Subject(s)
DNA, Complementary/genetics , NADPH-Ferrihemoprotein Reductase/genetics , Plants/enzymology , Plants/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Conserved Sequence , Escherichia coli/genetics , Gene Expression , Genes, Plant , Molecular Sequence Data , NADPH-Ferrihemoprotein Reductase/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...