Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Iran J Biotechnol ; 22(1): e3629, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827339

ABSTRACT

Background: The use of nanomaterial-based radiosensitizers to improve the therapeutic ratio has gained attraction in radiotherapy. Increased radiotoxicity applied to the tumor region may result in adverse impact on the unexposed normal cells to the radiation, a phenomenon known as radiation-induced bystander effect (RIBE). Objectives: This study aimed to investigate the effect of Bi2S3@BSA nanoparticles (NPs) as radiosensitizers on the enhancement of bystander response in non-irradiated cells. Materials and Methods: Lung carcinoma epithelial cells were exposed to 6 MV x-ray photons at different doses of 2 and 8 Gy, with and without Bi2S3@BSA NPs. The irradiated-cell's conditioned medium (ICCM) was collected and incubated with MCR-5 human fetal lung fibroblasts. Results: This study showed that ICCM collected from 2-Gy-irradiated A549 cells in the presence of Bi2S3@BSA NPs reduced the cell viability of MCR-5 bystander cells more than ICCM collected from irradiated cells without NPs (P<0.05), whereas such a difference was not observed after 8-Gy radiation. The mRNA expression of the BAX and XPA genes, as well as the cell death rate in MCR-5 bystander cells, revealed that the Bi2S3@BSA NPs significantly improved bystander response at 2-Gy (P<0.05), but the efficacy was not statistically significant after 8-Gy Irradiation. Conclusion: The results indicated that the presence of NPs did not affect bystander response enhancement at higher concentrations. These findings highlighted the potential use of radiation-enhancing agents and their benefits in radiotherapy techniques with high doses per fraction.

2.
Front Oncol ; 14: 1377761, 2024.
Article in English | MEDLINE | ID: mdl-38846985

ABSTRACT

Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.

3.
J Drug Target ; : 1-37, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847573

ABSTRACT

The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems, in all active, passive, and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumor site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment, and monitoring of cancer cells. In this review, the specific design of drug delivery systems (DDS) based on the different nano-particles and their surface engineering are discussed. In addition, the innovative clinical studies in which nano-based DDS in the treatment of HCC were highlighted.

4.
Iran J Basic Med Sci ; 27(7): 868-878, 2024.
Article in English | MEDLINE | ID: mdl-38800010

ABSTRACT

Objectives: Skin aging is a degenerative process that can be induced by UV irradiation. UV radiation can produce reactive oxidate stress which causes premature aging. This study aims to examine the antiaging potential of secretome gel (SC) from human Wharton Jelly Mesenchymal Stem Cells (hWJ-MSCs) in a UVB-induced mice model. Materials and Methods: The secretome was obtained from hWJ-MSCs and made in gel form. Male mice were radiated by UVB for 15 min twice daily for 14 days. The gel was topically applied to the mice's dorsal skin. Two treatments of secretome gel: secretome 1 is applied once and secretome 2 is applied twice daily after UVB radiation. TGF-ß1, IL-10, and IL-18 gene expression was determined using RT-PCR. Hematoxylin Eosin staining was used to observe the inflammation and collagen density of skin tissue. An immunohistochemistry assay was used to analyze the protein expression of P53, COL4A1, MMP-2, and MMP-13. The data were statistically analyzed using the ANOVA test followed by the Tukey post hoc test (P<0.05). Results: UVB induction caused loss of collagen, increasing inflammation and high expression of aging mediators. SC increased the gene expression of TGF-ß1 and IL-10 and decreased IL-18 gene expression. Histopathological tests showed that SG increased collagen density, lowered inflammation, and repaired cell damage in skin tissue. Immunohistochemistry test showed that SC decreased MMP-2, MMP-13, and P53 expression, in contrast, increased COL4A1. Conclusion: The secretome gel of hWJ-MSCs showed antiaging activities with potential for preventing and curing skin aging.

5.
EXCLI J ; 23: 421-440, 2024.
Article in English | MEDLINE | ID: mdl-38741724

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a high-prevalence and progressive disorder. Due to lack of reliable in vitro models to recapitulate the consecutive phases, the exact pathogenesis mechanism of this disease and approved therapeutic medications have not been revealed yet. It has been proven that the interplay between multiple hepatic cell types and liver extracellular matrix (ECM) are critical in NAFLD initiation and progression. Herein, a liver microtissue (LMT) consisting of Huh-7, THP-1, and LX-2 cell lines and human umbilical vein endothelial cells (HUVEC), which could be substituted for the main hepatic cells (hepatocyte, Kupffer, stellate, and sinusoidal endothelium, respectively), encapsulated in liver derived ECM-Alginate composite, was bioengineered. When the microtissues were treated with free fatty acids (FFAs) including Oleic acid (6.6×10-4M) and Palmitic acid (3.3×10-4M), they displayed the key features of NAFLD, including similar pattern of transcripts for genes involved in lipid metabolism, inflammation, insulin-resistance, and fibrosis, as well as pro-inflammatory and pro-fibrotic cytokines' secretions and intracellular lipid accumulation. Continuing FFAs supplementation, we demonstrated that the NAFLD phenomenon was established on day 3 and progressed to the initial fibrosis stage by day 8. Furthermore, this model was stable until day 12 post FFAs withdrawal on day 3. Moreover, administration of an anti-steatotic drug candidate, Liraglutide (15 µM), on the NAFLD microtissues significantly ameliorated the NAFLD phenomenon. Overall, we bioengineered a drug-responsive, cost-benefit liver microtissues which can simulate the initiation and progression of NAFLD. It is expected that this platform could potentially be used for studying molecular pathogenesis of NAFLD and high-throughput drug screening. See also the graphical abstract(Fig. 1).

6.
Article in English | MEDLINE | ID: mdl-38797903

ABSTRACT

Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.

7.
Trials ; 25(1): 226, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556879

ABSTRACT

BACKGROUND: Burn-related injuries are a major global health issue, causing 180,000 deaths per year. Early debridement of necrotic tissue in association with a split-thickness skin graft is usually administered for some of the 2nd- and 3rd-degree injuries. However, this approach can be complicated by factors such as a lack of proper donor sites. Artificial skin substitutes have attracted much attention for burn-related injuries. Keratinocyte sheets are one of the skin substitutes that their safety and efficacy have been reported by previous studies. METHODS: Two consecutive clinical trials were designed, one of them is phase I, a non-randomized, open-label trial with 5 patients, and phase II is a randomized and open-label trial with 35 patients. A total number of 40 patients diagnosed with 2nd-degree burn injury will receive allogenic keratinocyte sheet transplantation. The safety and efficacy of allogeneic skin graft with autograft skin transplantation and conventional treatments, including Vaseline dressing and topical antibiotic, will be compared in different wounds of a single patient in phase II. After the transplantation, patients will be followed up on days 3, 7, 10, 14, 21, and 28. In the 3rd and 6th months after the transplantation scar, a wound closure assessment will be conducted based on the Vancouver Scar Scale and the Patient and Observer Scar Assessment Scale. DISCUSSION: This study will explain the design and rationale of a cellular-based skin substitute for the first time in Iran. In addition, this work proposes this product being registered as an off-the-shelf product for burn wound management in the country. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (IRCT) IRCT20080728001031N31, 2022-04-23 for phase I and IRCT20080728001031N36, 2024-03-15 for phase II.


Subject(s)
Burns , Hematopoietic Stem Cell Transplantation , Humans , Burns/diagnosis , Burns/therapy , Burns/complications , Cicatrix/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Iran , Keratinocytes , Skin Transplantation/adverse effects
8.
Cell J ; 26(3): 210-211, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38628094

ABSTRACT

The rapid development of knowledge on healthy nutrition, and hygiene practices, as well as the advent of antibiotics and vaccines, has led to increased life expectancy in the recent century. The extended lifespan has brought new challenges for healthcare professionals, including the management of chronic degenerative diseases, malignancies, and autoimmune disorders. Advanced therapeutic medicinal products (ATMPs) have emerged as a promising frontier alongside conventional therapeutic modalities, offering innovative solutions through cell-based therapies, gene therapy, and tissue engineering. Recent years have witnessed remarkable advancements in regenerative medicine and the launching of innovative ATMPs. Numerous ATMPs have been registered and approved by regulatory agencies for the management of different diseases in 2023. The approval of groundbreaking therapies around the world has made 2023 an exceptional year. Novel ATMPs and the development of artificial intelligence (AI) in 2023 will pave the way for the integration of ATMPs and advanced technologies in personalized medicine, early diagnosis and targeted treatments.

9.
Eur J Pharmacol ; 973: 176563, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38593929

ABSTRACT

Abnormalities in epigenetic modifications can cause malignant transformations in cells, leading to cancers of the gastrointestinal (GI) tract, which accounts for 20% of all cancers worldwide. Among the epigenetic alterations, DNA hypomethylation is associated with genomic instability. In addition, CpG methylation and promoter hypermethylation have been recognized as biomarkers for different malignancies. In GI cancers, epigenetic alterations affect genes responsible for cell cycle control, DNA repair, apoptosis, and tumorigenic-specific signaling pathways. Understanding the pattern of alterations in DNA methylation in GI cancers could help scientists discover new molecular-based pharmaceutical treatments. This study highlights alterations in DNA methylation in GI cancers. Understanding epigenetic differences among GI cancers may improve targeted therapies and lead to the discovery of new diagnostic biomarkers.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gastrointestinal Neoplasms , DNA Methylation/genetics , Humans , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Animals , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics
10.
Drug Dev Res ; 85(3): e22189, 2024 May.
Article in English | MEDLINE | ID: mdl-38678548

ABSTRACT

In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.


Subject(s)
Chitosan , Nanoparticles , Neoplasms , Chitosan/chemistry , Humans , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
11.
Front Immunol ; 15: 1371089, 2024.
Article in English | MEDLINE | ID: mdl-38571964

ABSTRACT

CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , T-Lymphocytes, Regulatory , Cytokines , Tumor Microenvironment
12.
Cell J ; 26(2): 98-111, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38459727

ABSTRACT

Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.

13.
Cell Biol Int ; 48(5): 556-576, 2024 May.
Article in English | MEDLINE | ID: mdl-38411312

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/ß-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/genetics , Phosphatidylinositol 3-Kinases/metabolism , Epigenesis, Genetic , Wnt Signaling Pathway , Apoptosis/genetics
14.
Scand J Gastroenterol ; 59(5): 623-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38319110

ABSTRACT

The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.


Subject(s)
Liver , Tissue Engineering , Humans , Tissue Engineering/methods , Liver/blood supply , Organoids , Liver Transplantation , Bioprinting/methods , Biomedical Research , Neovascularization, Physiologic , Bioengineering , Animals
15.
Heliyon ; 10(2): e24948, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312681

ABSTRACT

Inflammatory and autoimmune diseases are among the most challenging disorders for health care professionals that require systemic immune suppression which associates with various side effects. Mesenchymal stromal cells (MSCs) are capable of regulating immune responses, mainly through paracrine effects and cell-cell contact. Since MSCs are advanced therapy medicinal products (ATMPs), they must follow Good Manufacturing Practice (GMP) regulations to ensure their safety and efficacy. In this study, we evaluated the immunomodulatory effects of GMP-compliant clinical grade MSCs obtained from four different sources (bone marrow, adipose tissue, Wharton's Jelly, and decidua tissue) on allogeneic peripheral blood mononuclear cells (PBMCs). Our results revealed that WJ-MSCs were the most successful group in inhibiting PBMC proliferation as confirmed by BrdU analysis. Moreover, WJ-MSCs were the strongest group in enhancing the regulatory T cell population of PBMCs. WJ-MSCs also had the highest secretory profile of prostaglandin E2 (PGE-2), anti-inflammatory cytokine, while interleukin-10 (IL-10) secretion was highest in the DS-MSC group. DS-MSCs also had the lowest secretion of IL-12 and IL-17 inflammatory cytokines. Transcriptome analysis revealed that WJ-MSCs had the lowest expression of IL-6, while DS-MSCs were the most potent group in the expression of immunomodulatory factors such as hepatocyte growth factor (HGF) and transforming growth factor-ß (TGF- ß). Taken together, our results indicated that GMP-compliant Wharton's Jelly and decidua-derived MSCs showed the best immunomodulatory performance considering paracrine factors.

17.
J Cent Nerv Syst Dis ; 16: 11795735231223411, 2024.
Article in English | MEDLINE | ID: mdl-38188227

ABSTRACT

Background: In spite of the observed immunomodulatory properties of different sex hormones on Multiple Sclerosis (MS) in different investigations, to date, there has been no study to systematically review the documents to add more powerful data to the field. Objectives: Therefore, in this paper we aim to systematically review clinical and randomized controlled trials (RCT) assessing the effect of sex hormone therapies on individuals with MS. Design: A comprehensive search of electronic databases including PubMed, EMBASE, and Scopus was conducted. Clinical trials and RCTs that assessed the impact of sex hormones on individuals with MS were selected and included in the systematic review. Data sources and methods: In the final phase of the search strategy, 9 papers reached the criteria for entering in the systematic review. Two independent reviewers extracted the relevant data from each article according to the standardized data extraction form. Two reviewers also assessed the quality of each study independently using PEDro scale. Results: We categorized three different classifications of outcomes including clinical, MRI, and immune system findings and put each measured outcome in the category which matched best. Conclusion: In conclusion, the existed investigations on the effect of sex hormones on inflammatory and neurodegenerative components of MS are promising particularly in relapsing-remitting MS (RRMS).


Immunomodulatory properties of different sex hormones on Multiple Sclerosis (MS) have been proposed. Therefore, in this paper we aim to systematically review clinical and randomized controlled trials (RCT) assessing the effect of sex hormone therapies on individuals with MS. A comprehensive search of electronic databases was conducted. Clinical trials and RCTs that assessed the impact of sex hormones on individuals with MS were selected and included in the systematic review. In the final phase of the search strategy, 9 papers reached the criteria for entering in the systematic review. Two independent reviewers extracted the relevant data from each article according to the standardized data extraction form. We categorized three different classifications of outcomes including clinical, MRI, and immune system findings and put each measured outcome in the category which matched best. The existed investigations on the effect of sex hormones on inflammatory and neurodegenerative components of MS are promising particularly in relapsing-remitting MS (RRMS).

18.
Article in English | MEDLINE | ID: mdl-38275042

ABSTRACT

The number of patients with functional loss of bone and cartilage tissue has shown an increasing trend. Insufficient or inappropriate conventional treatments applied for trauma, orthopedic diseases, or other bone and cartilage-related disorders can lead to bone and cartilage damage. This represents a worldwide public health issue and a significant economic burden. Advanced therapeutic medicinal products (ATMPs) proposed promising alternative therapeutic modalities by application of cell-based and tissue engineering approaches. Recently, several ATMPs have been developed to promote bone and cartilage tissue regeneration. Fifteen ATMPs, two related to bone and 13 related to cartilage, have received regulatory approval and marketing authorization. However, four ATMPs were withdrawn from the market for various reasons. However, ATMPs that are still on the market have demonstrated positive results, their broad application faced limitations. The development and standardization of methodologies will be a major challenge in the coming decades. Currently, the number of ATMPs in clinical trials using mesenchymal stromal cells or chondrocytes indicates a growing recognition that current ATMPs can be improved. Research on bone and cartilage tissue regeneration continues to expand. Cell-based therapies are likely to be clinically supported by the new ATMPs, innovative fabrication processes, and enhanced surgical approaches. In this study, we highlighted the available ATMPs that have been used in bone and cartilage defects and discussed their advantages and disadvantages in clinical applications.

19.
J Biomol Struct Dyn ; : 1-29, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287509

ABSTRACT

The emergence of new SARS-CoV-2 variants has raised concerns about the effectiveness of COVID-19 vaccines. To address this challenge, small-molecule antivirals have been proposed as a crucial therapeutic option. Among potential targets for anti-COVID-19 therapy, the main protease (Mpro) of SARS-CoV-2 is important due to its essential role in the virus's life cycle and high conservation. The substrate-binding region of the core proteases of various coronaviruses, including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), could be used for the generation of new protease inhibitors. Various drug discovery methods have employed a diverse range of strategies, targeting both monomeric and dimeric forms, including drug repurposing, integrating virtual screening with high-throughput screening (HTS), and structure-based drug design, each demonstrating varying levels of efficiency. Covalent inhibitors, such as Nirmatrelvir and MG-101, showcase robust and high-affinity binding to Mpro, exhibiting stable interactions confirmed by molecular docking studies. Development of effective antiviral drugs is imperative to address potential pandemic situations. This review explores recent advances in the search for Mpro inhibitors and the application of artificial intelligence (AI) in drug design. AI leverages vast datasets and advanced algorithms to streamline the design and identification of promising Mpro inhibitors. AI-driven drug discovery methods, including molecular docking, predictive modeling, and structure-based drug repurposing, are at the forefront of identifying potential candidates for effective antiviral therapy. In a time when COVID-19 potentially threat global health, the quest for potent antiviral solutions targeting Mpro could be critical for inhibiting the virus.Communicated by Ramaswamy H. Sarma.

20.
Int J Pharm ; 649: 123635, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38000649

ABSTRACT

Asialoglycoprotein receptors (ASGPRs) are highly expressed on hepatocytes and have been used for liver-targeted delivery and hepatocellular carcinoma (HCC) therapy. However, targeted delivery of bortezomib (BTZ) to HCC has not been reported. In this study, N-stearyl lactobionamide (N-SALB) with galactose (Gal) moiety was synthesized as a targeting agent and its structure was confirmed by FT-IR and NMR analyses. N-SALB surface-modified solid lipid nanoparticles (SLNs) loaded with BTZ (Gal-SLNs/BTZ) were developed to target BTZ delivery into HCC cancer cells. The Gal-SLNs/BTZ had an average particle size of 116.3 nm, polydispersity index (PDI) of 0.210, and zeta potential of -13.8 mV. TEM analysis showed their nanometer-sized spherical morphology. The encapsulation efficiency (EE) and drug loading (DL) capacity were 84.5 % and 1.16 %, respectively. Release studies showed that BTZ loaded inside the SLNs was slowly released over a period of 72 h at pH 7.4. Flow cytometry analysis showed significantly higher intracellular uptake of N-SALB-targeted nanoparticles than non-targeted nanoparticles in HepG2 cells. All lipid formulations showed good biocompatibility in the cytotoxicity study using MTT assay. Concentration-dependent cytotoxicity was observed for all formulations, with N-SALB-targeted nanoparticles demonstrating more cytotoxicity against HepG2 cells. The highest percentage of apoptosis was obtained for N-SALB-targeted nanoparticles compared to non-targeted nanoparticles (42.2 % and 8.70 %, respectively). Finally, biodistribution studies in HepG2 bearing nude mice showed that the accumulation of targeted nanoparticles in the tumor was significantly higher than non-targeted nanoparticles.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Mice , Animals , Bortezomib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Mice, Nude , Tissue Distribution , Spectroscopy, Fourier Transform Infrared , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Particle Size , Drug Carriers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...