Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 07 16.
Article in English | MEDLINE | ID: mdl-31310234

ABSTRACT

Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.


Subject(s)
Electroporation , Molecular Imaging , Recombinant Proteins/metabolism , Cell Line , Chromosomes, Human/metabolism , Farnesyltranstransferase/metabolism , Green Fluorescent Proteins/metabolism , Humans , Hydrodynamics , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Mutation/genetics , Prenylation
2.
Elife ; 3: e02978, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25006165

ABSTRACT

Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore-centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers.DOI: http://dx.doi.org/10.7554/eLife.02978.001.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , GTP Phosphohydrolases/metabolism , Kinetochores/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Crystallography, X-Ray , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , HeLa Cells , Humans , Kinetochores/chemistry , Models, Biological , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Folding , Protein Stability , Protein Structure, Quaternary , Protein Subunits , RNA, Small Interfering/genetics , Sequence Homology, Amino Acid
3.
Biol Chem ; 386(7): 643-56, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16207085

ABSTRACT

Septins are filament-forming GTPases involved in cytokinesis and cortical organization. In the yeast Saccharomyces cerevisiae, the septins encoded by CDC3, CDC10, CDC11, and CDC12 form a high-molecular-weight complex, localized at the cytoplasmic face of the plasma membrane in the mother-bud neck. While septin function at the cellular level is fairly well understood, progress on structure-function analysis of these proteins has been slow and limited by the lack of large amounts of pure complex. While monomeric septins form apparently non-native aggregates, stable recombinant complexes of two, three, or four yeast septins can be produced by co-expression from bi-cistronic vectors in E. coli. The septin polypeptides show various degrees of saturation with guanine nucleotides in different complexes. The binary core Cdc3p-Cdc12p complex contains no bound nucleotide. While ternary complexes are partially saturated and can bind extraneously added nucleotide with micromolar affinity, only the complete four-component septin complex is fully coordinated with tightly bound GDP/GTP after chromatographic purification. We show here that the nucleotide-binding sites of the septins show drastic changes on formation of higher oligomers. Although the binary core Cdc3p-Cdc12p complex does not form filaments, the ternary and quaternary complexes form bundles of paired filaments. In the case of ternary complexes, filament formation is stimulated by guanine nucleotide, but is not dependent on the presence or absence of the gamma-phosphate.


Subject(s)
Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Saccharomyces cerevisiae/metabolism , Base Sequence , Colorimetry , DNA Primers , Hydrolysis , Protein Binding , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...