Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ergonomics ; 61(3): 429-443, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28689462

ABSTRACT

Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase.


Subject(s)
Attention/physiology , Automobile Driving , Evoked Potentials , Memory, Short-Term , Workload , Adolescent , Adult , Computer Simulation , Female , Humans , Male , Reaction Time , Task Performance and Analysis , Young Adult
2.
Psychophysiology ; 53(2): 237-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26524126

ABSTRACT

Visuospatial attentional orienting has typically been studied in abstract tasks with low ecological validity. However, real-life tasks such as driving require allocation of working memory (WM) resources to several subtasks over and above orienting in a complex sensory environment. The aims of this study were twofold: firstly, to establish whether electrophysiological signatures of attentional orienting commonly observed under simplified task conditions generalize to a more naturalistic task situation with realistic-looking stimuli, and, secondly, to assess how these signatures are affected by increased WM load under such conditions. Sixteen healthy participants performed a dual task consisting of a spatial cueing paradigm and a concurrent verbal memory task that simulated aspects of an actual traffic situation. Behaviorally, we observed a load-induced detriment of sensitivity to targets. In the EEG, we replicated orienting-related alpha lateralization, the lateralized ERPs ADAN, EDAN, and LDAP, and the P1-N1 attention effect. When WM load was high (i.e., WM resources were reduced), lateralization of oscillatory activity in the lower alpha band was delayed. In the ERPs, we found that ADAN was also delayed, while EDAN was absent. Later ERP correlates were unaffected by load. Our results show that the findings in highly controlled artificial tasks can be generalized to spatial orienting in ecologically more valid tasks, and further suggest that the initiation of spatial orienting is delayed when WM demands of an unrelated secondary task are high.


Subject(s)
Attention/physiology , Brain/physiology , Evoked Potentials/physiology , Memory, Short-Term/physiology , Orientation, Spatial/physiology , Space Perception/physiology , Visual Perception/physiology , Adolescent , Adult , Automobile Driving , Cues , Electroencephalography , Female , Humans , Male , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...