Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 11: 1484-1491, 2020.
Article in English | MEDLINE | ID: mdl-33083196

ABSTRACT

A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW. In the frequency range from 6 to 12 GHz its gain exceeds 30 dB. The equivalent noise temperature of the amplifier is below 6 K for the presented frequency range. The amplifier is applicable for any type of cryogenic microwave measurements. As an example we demonstrate here the characterization of the superconducting X-mon qubit coupled to an on-chip coplanar waveguide resonator.

2.
Beilstein J Nanotechnol ; 11: 1316-1320, 2020.
Article in English | MEDLINE | ID: mdl-32953375

ABSTRACT

We designed, implemented, and characterized differential amplifiers for cryogenic temperatures based on Si bipolar junction transistor technology. The amplifiers show high gain values of more than 60 dB at 300, 77, and 48 K. The minimum voltage noise spectral density was achieved at 77 K and corresponded to 0.33 nV/Hz0.5 with a flicker noise of 20 Hz. The maximum voltage gain was 70 dB at 77 K for a frequency range from DC to 17 kHz. We experimentally show that the parallel differential circuit design allows for a reduction of the voltage noise from 0.55 to 0.33 nV/Hz0.5 at 77 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...