Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36140844

ABSTRACT

The personalized approach in sports genetics implies considering the allelic variants of genes in polymorphic loci when adjusting the training process of athletes. The personalized approach is used both in sports genetics and in medicine to identify the influence of genotype on the manifestations of human physical qualities that allow to achieve high sports results or to assess the impact of genotype on the development and course of diseases. The impact of genes of the renin-angiotensin and kinin-bradykinin systems in the development of cardiovascular disease in athletes has not been defined. This study aims to determine the polymorphisms of four genes (ACE, BDKRB2, PPARGC1A and NOS3) and the total genetic score to reveal the predisposition to the formation of physical qualities in martial arts athletes with different athletic abilities. The products of these four genes are involved in the control of blood pressure. The allelic variants of these genes are associated with the development of the physical quality "endurance" and have an indirect influence on the formation of speed and power qualities. The total genetic score (TGS: from 0 to 100 arbitrary units) was calculated from the genotype score in each polymorphism. The athletes were divided into Group I with high and Group II with low qualifications depending on their sports success. Single nucleotide polymorphisms (SNPs) are identified through restriction endonucleases cleavage for PCR amplicons for discriminating between alleles of the target genes ACE (rs4646994), BDKRB2 (rs5810761), PPARGC1A (rs8192673) and NOS3 (rs1799983). Significant differences between the allelic variants of target genes and athletic ability were found between Group I and Group II for genotype G/G of NOS3 gene and genotypes Gly/Gly and Gly/Ser of PPARGC1A gene. The data obtained confirm that athletes with unfavourable genotypes are excluded in the screening phase because their endurance is not fully developed to the required level in martial arts. Martial arts athletes with the highest TGS have the highest skill level. Polymorphic loci of four genes whose products are involved in blood pressure control (ACE, BDKRB2, NOS3 and PPARGC1A) can be used in martial arts not only to determine predisposition to cardiovascular disease but also to predispose to the development of speed and power qualities and endurance. The total genetic score can serve as a tool for predicting athletic success.


Subject(s)
Athletic Performance , Cardiovascular Diseases , Martial Arts , Angiotensins , Athletes , Athletic Performance/physiology , Bradykinin , DNA Restriction Enzymes , Humans , Polymorphism, Single Nucleotide , Renin
2.
Colloids Surf B Biointerfaces ; 181: 533-538, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31185445

ABSTRACT

A new fundamental concept for one-step in-situ functionalization of gold nanoparticles (GNPs) with folic acid using hydrothermal treatment is described. Hydrothermal treatment has been tuned to increase the light emission from the pterin moiety of folic acid molecule, while retain its structure and functionality, thus providing a simple route to multimodal tags for a variety of in vitro and in vivo biomedical applications. Successful functionalization of GNPs with the biological ligand is confirmed by specific binding with anti-folic acid antibody.


Subject(s)
Folic Acid/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Temperature , Animals , Cattle , Immunoglobulin G/chemistry , Mice , Molecular Structure , Serum Albumin, Bovine/chemistry
3.
Soft Matter ; 14(44): 9012-9019, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30378616

ABSTRACT

Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.

4.
Sci Rep ; 8(1): 16301, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30390023

ABSTRACT

Carbon nanodots (CNDs) doped with Tb ions were synthesized using different synthetic routes: hydrothermal treatment of a solution containing carbon source (sodium dextran sulfate) and TbCl3; mixing of CNDs and TbCl3 solutions; freezing-induced loading of Tb and carbon-containing source into pores of CaCO3 microparticles followed by hydrothermal treatment. Binding of Tb ions to CNDs (Tb-CND coupling) was confirmed using size-exclusion chromatography and manifested itself through a decrease of the Tb photoluminescence lifetime signal. The shortest Tb photoluminescence lifetime was observed for samples obtained by hydrothermal synthesis of CaCO3 microparticles where Tb and carbon source were loaded into pores via the freezing-induced process. The same system displays an increase of Tb photoluminescence via energy transfer with excitation at 320-340 nm. Based on the obtained results, freezing-induced loading of cations into CNDs using porous CaCO3 microparticles as reactors is proposed to be a versatile route for the introduction of active components into CNDs. The obtained CNDs with long-lived emission may be used for time-resolved imaging and visualization in living biological samples where time-resolved and long-lived luminescence microscopy is required.

5.
Sci Rep ; 8(1): 9394, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925932

ABSTRACT

Synthesis of carbon nanodots (CNDs) in confined geometry via incorporation of dextran sulphate into pores of CaCO3 microparticles is demonstrated. The preparation process included three steps: co-precipitation of solutions of inorganic salts and carbon source, thermal treatment and CaCO3 matrix removal. We show that geometric constraints can be used to precisely control the amount of source material and to avoid formation of large carbon particles. Analysis of TEM data shows particle size of ~3.7 nm with narrow size distribution. Furthermore, we found that variation in pore morphology has a clear effect on CNDs structure and optical properties. CNDs with graphene oxide like structure were obtained in the nanoporous outer shell layer of CaCO3 microparticles, while less ordered CNDs with the evidence of complex disordered carbons were extracted from the inner microcavity. These results suggest that confined volume synthesis route in CaCO3 nanopores can be used to precisely control the structure and optical properties of CNDs.

6.
Ultrasonics ; 48(5): 351-6, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18291434

ABSTRACT

The article is devoted to theoretical analysis of light diffraction in a non-homogeneous acoustic field created by a wedge-shaped piezoelectric transducer. Relationships describing electrical, acoustic and acousto-optic properties of the acousto-optic cell are derived in the approximation of a small thickness of the piezoelectric plate. Principal characteristics of acousto-optic interaction are examined such as dependences of the light diffraction efficiency on the phase mismatch and the acoustic wave amplitude. It is shown that the acoustic field has a complicated amplitude-phase structure changing with the acoustic frequency. It is demonstrated that the diffraction efficiency in the Bragg regime can approach 100% in spite of a noticeable phase mismatch. The appropriate optimal values of ultrasound power and incidence angles of light are found.


Subject(s)
Acoustics/instrumentation , Computer-Aided Design , Elasticity Imaging Techniques/instrumentation , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , Optics and Photonics/instrumentation , Transducers , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...