Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 65(3): 100525, 2024 03.
Article in English | MEDLINE | ID: mdl-38417553

ABSTRACT

The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.


Subject(s)
Fructose-Bisphosphate Aldolase , Genome-Wide Association Study , Humans , Mice , Animals , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Proteomics , Cholesterol/metabolism , Liver/metabolism
2.
J Biol Chem ; 299(11): 105333, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827290

ABSTRACT

Branched chain α-ketoacid dehydrogenase complex (BCKDC) is the rate-limiting enzyme in branched chain amino acid (BCAA) catabolism, a metabolic pathway with great importance for human health. BCKDC belongs to the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex. Here, we revealed that BCKDC can be substantially inhibited by reactive nitrogen species (RNS) via a mechanism similar to what we recently discovered with pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex-RNS can cause inactivating covalent modifications of the lipoic arm on its E2 subunit. In addition, we showed that such reaction between RNS and the lipoic arm of the E2 subunit can further promote inhibition of the E3 subunits of α-ketoacid dehydrogenase complexes. We examined the impacts of this RNS-mediated BCKDC inhibition in muscle cells, an important site of BCAA metabolism, and demonstrated that the nitric oxide production induced by cytokine stimulation leads to a strong inhibition of BCKDC activity and BCAA oxidation in myotubes and myoblasts. More broadly, nitric oxide production reduced the level of functional lipoic arms across the multiple α-ketoacid dehydrogenases and led to intracellular accumulation of their substrates (α-ketoacids), decrease of their products (acyl-CoAs), and a lower cellular energy charge. In sum, this work revealed a new mechanism for BCKDC regulation, demonstrated that RNS can generally inhibit all α-ketoacid dehydrogenases, which has broad physiological implications across multiple cell types, and elucidated the mechanistic connection between RNS-driven inhibitory modifications on the E2 and E3 subunits of α-ketoacid dehydrogenases.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Muscle Cells , Nitric Oxide , Reactive Nitrogen Species , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Ketoglutarate Dehydrogenase Complex , Muscle Cells/metabolism , Pyruvate Dehydrogenase Complex , Reactive Nitrogen Species/metabolism
3.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37808750

ABSTRACT

Neutrophils - the first responders in innate immunity - perform a variety of effector functions associated with specific metabolic demand. To maintain fitness and support functions, neutrophils have been found to utilize extracellular glucose, intracellular glycogen, and other alternative substrates. However, the quantitative contribution of these nutrients under specific conditions and the relative dependence of various cell functions on specific nutrients remain unclear. Here, using ex vivo and in vivo isotopic tracing, we reveal that under resting condition, human peripheral blood neutrophils, in contrast to in vitro cultured human neutrophil-like cell lines, rely on glycogen as a major direct source of glycolysis and pentose phosphate pathway. Upon activation with a diversity of stimuli, neutrophils undergo a significant and often rapid nutrient preference shift, with glucose becoming the dominant metabolic source thanks to a multi-fold increase in glucose uptake mechanistically mediated by the phosphorylation and translocation of GLUT1. At the same time, cycling between gross glycogenesis and glycogenolysis is also substantially increased, while the net flux favors sustained or increased glycogen storage. The shift in nutrient utilization impacts neutrophil functions in a function-specific manner. The activation of oxidative burst specifically depends on the utilization of extracellular glucose rather than glycogen. In contrast, the release of neutrophil traps can be flexibly supported by either glucose or glycogen. Neutrophil migration and fungal control is promoted by the shift away from glycogen utilization. Together, these results quantitatively characterize fundamental features of neutrophil metabolism and elucidate how metabolic remodeling shapes neutrophil functions upon activation.

4.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234794

ABSTRACT

During an immune response, macrophages systematically rewire their metabolism in specific ways to support their diversve functions. However, current knowledge of macrophage metabolism is largely concentrated on central carbon metabolism. Using multi-omics analysis, we identified nucleotide metabolism as one of the most significantly rewired pathways upon classical activation. Further isotopic tracing studies revealed several major changes underlying the substantial metabolomic alterations: 1) de novo synthesis of both purines and pyrimidines is shut down at several specific steps; 2) nucleotide degradation activity to nitrogenous bases is increased but complete oxidation of bases is reduced, causing a great accumulation of nucleosides and bases; and 3) cells gradually switch to primarily relying on salvaging the nucleosides and bases for maintaining most nucleotide pools. Mechanistically, the inhibition of purine nucleotide de novo synthesis is mainly caused by nitric oxide (NO)-driven inhibition of the IMP synthesis enzyme ATIC, with NO-independent transcriptional downregulation of purine synthesis genes augmenting the effect. The inhibition of pyrimidine nucleotide de novo synthesis is driven by NO-driven inhibition of CTP synthetase (CTPS) and transcriptional downregulation of thymidylate synthase (TYMS). For the rewiring of degradation, purine nucleoside phosphorylase (PNP) and uridine phosphorylase (UPP) are transcriptionally upregulated, increasing nucleoside degradation activity. However, complete degradation of purine bases by xanthine oxidoreductase (XOR) is inhibited by NO, diverting flux into nucleotide salvage. Inhibiting the activation-induced switch from nucleotide de novo synthesis to salvage by knocking out the purine salvage enzyme hypoxanthine-guanine phosporibosyl transferase (Hprt) significantly alters the expression of genes important for activated macrophage functions, suppresses macrophage migration, and increases pyroptosis. Furthermore, knocking out Hprt or Xor increases proliferation of the intracellular parasite Toxoplasma gondii in macrophages. Together, these studies comprehensively reveal the characteristics, the key regulatory mechanisms, and the functional importance of the dynamic rewiring of nucleotide metabolism in classically activated macrophages.

5.
Am J Physiol Renal Physiol ; 322(1): F89-F103, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34843656

ABSTRACT

Chronic kidney disease involves disturbances in iron metabolism including anemia caused by insufficient erythropoietin (EPO) production. However, underlying mechanisms responsible for the dysregulation of cellular iron metabolism are incompletely defined. Using the unilateral ureteral obstruction (UUO) model in Irp1+/+ and Irp1-/- mice, we asked if iron regulatory proteins (IRPs), the central regulators of cellular iron metabolism and suppressors of EPO production, contribute to the etiology of anemia in kidney failure. We identified a significant reduction in IRP protein level and RNA binding activity that associates with a loss of the iron uptake protein transferrin receptor 1 (TfR1), increased expression of the iron storage protein subunits H- and L-ferritin, and a low but overall variable level of stainable iron in the obstructed kidney. This reduction in IRP RNA binding activity and ferritin RNA levels suggests the concomitant rise in ferritin expression and iron content in kidney failure is IRP dependent. In contrast, the reduction in the Epo mRNA level in the obstructed kidney was not rescued by genetic ablation of IRP1, suggesting disruption of normal hypoxia-inducible factor (HIF)-2α regulation. Furthermore, reduced expression of some HIF-α target genes in UUO occurred in the face of increased expression of HIF-α proteins and prolyl hydroxylases 2 and 1, the latter of which is not known to be HIF-α mediated. Our results suggest that the IRP system drives changes in cellular iron metabolism that are associated with kidney failure in UUO but that the impact of IRPs on EPO production is overridden by disrupted hypoxia signaling.NEW & NOTEWORTHY This study demonstrates that iron metabolism and hypoxia signaling are dysregulated in unilateral obstructive nephropathy. Expression of iron regulatory proteins (IRPs), central regulators of cellular iron metabolism, and the iron uptake (transferrin receptor 1) and storage (ferritins) proteins they target is strongly altered. This suggests a role of IRPs in previously observed changes in iron metabolism in progressive renal disease. Hypoxia signaling is disrupted and appeared to dominate the action of IRP1 in controlling erythropoietin expression.


Subject(s)
Anemia/etiology , Iron/metabolism , Kidney/metabolism , Renal Insufficiency/etiology , Ureteral Obstruction/complications , Anemia/metabolism , Anemia/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia , Disease Models, Animal , Erythropoietin/genetics , Erythropoietin/metabolism , Ferritins/genetics , Ferritins/metabolism , Fibrosis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 1/metabolism , Kidney/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
6.
Curr Opin Lipidol ; 32(2): 141-146, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33651746

ABSTRACT

PURPOSE OF REVIEW: More than one hundred loci have been identified from human genome-wide association studies (GWAS) for blood lipids. Despite the success of GWAS in identifying loci, subsequent prioritization of causal genes related to these loci remains a challenge. To address this challenge, recent work suggests that candidate causal genes within loci can be prioritized through cross-species integration using genome-wide data from the mouse. RECENT FINDINGS: Mouse model systems provide unparalleled access to primary tissues, like the liver, that are not readily available for human studies. Given the key role the liver plays in controlling blood lipid levels and the wealth of liver genome-wide transcript and protein data available in the mouse, these data can be leveraged. Using coexpression network analysis approaches with mouse genome-wide data, coupled with cross-species analysis of human lipid GWAS, causal genes within lipid loci can be prioritized. Prioritization through both mouse and human along with biochemical validation provide a systematic and valuable method to discover lipid metabolism genes. SUMMARY: The prioritization of causal lipid genes within GWAS loci is a challenging process requiring a multidisciplinary approach. Integration of data types across species, such as the mouse, can aid in causal gene prioritization.


Subject(s)
Genome-Wide Association Study , Lipid Metabolism , Animals , Humans , Lipid Metabolism/genetics , Lipids , Mice , Models, Animal
7.
Cell Metab ; 31(4): 741-754.e5, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32197071

ABSTRACT

Identifying the causal gene(s) that connects genetic variation to a phenotype is a challenging problem in genome-wide association studies (GWASs). Here, we develop a systematic approach that integrates mouse liver co-expression networks with human lipid GWAS data to identify regulators of cholesterol and lipid metabolism. Through our approach, we identified 48 genes showing replication in mice and associated with plasma lipid traits in humans and six genes on the X chromosome. Among these 54 genes, 25 have no previously identified role in lipid metabolism. Based on functional studies and integration with additional human lipid GWAS datasets, we pinpoint Sestrin1 as a causal gene associated with plasma cholesterol levels in humans. Our validation studies demonstrate that Sestrin1 influences plasma cholesterol in multiple mouse models and regulates cholesterol biosynthesis. Our results highlight the power of combining mouse and human datasets for prioritization of human lipid GWAS loci and discovery of lipid genes.


Subject(s)
Cholesterol , Genome-Wide Association Study/methods , Heat-Shock Proteins/physiology , Animals , Cholesterol/blood , Cholesterol/metabolism , Databases, Genetic , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...