Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Plant Commun ; 5(6): 100920, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38616489

ABSTRACT

Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.


Subject(s)
Plants , Stress, Physiological , Systems Biology , Plants/genetics , Plants/metabolism , Plant Physiological Phenomena/genetics , Signal Transduction/genetics , Databases, Factual
2.
Front Plant Sci ; 14: 1228060, 2023.
Article in English | MEDLINE | ID: mdl-37692417

ABSTRACT

Introduction: Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods: In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results: Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions: These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.

3.
Front Plant Sci ; 14: 1223778, 2023.
Article in English | MEDLINE | ID: mdl-37771486

ABSTRACT

In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.

4.
BMC Plant Biol ; 22(1): 447, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36114461

ABSTRACT

BACKGROUND: Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS: In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION: This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.


Subject(s)
Arabidopsis , Hordeum , Arabidopsis/genetics , Calcium/metabolism , Flagellin/metabolism , Flagellin/pharmacology , Hordeum/metabolism , Hydrogen Peroxide/metabolism , Mannitol/metabolism , Mannitol/pharmacology , Plants/metabolism , Sodium Chloride/pharmacology
5.
J Exp Bot ; 73(21): 7165-7181, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36169618

ABSTRACT

Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.


Subject(s)
Plant Growth Regulators , Plants , Organelles , Abscisic Acid , Salicylic Acid
6.
Plant Cell Environ ; 45(10): 2906-2922, 2022 10.
Article in English | MEDLINE | ID: mdl-35864601

ABSTRACT

In this study, we investigated Arabidopsis thaliana plants with altered levels of the enzyme JASMONATE RESISTANT 1 (JAR1), which converts jasmonic acid (JA) to jasmonoyl-l-isoleucine (JA-Ile). Analysis of a newly generated overexpression line (35S::JAR1) revealed that constitutively increased JA-Ile production in 35S::JAR1 alters plant development, resulting in stunted growth and delayed flowering. Under drought-stress conditions, 35S::JAR1 plants showed reduced wilting and recovered better from desiccation than the wild type. By contrast, jar1-11 plants with a strong reduction in JA-Ile content were hypersensitive to drought. RNA-sequencing analysis and hormonal profiling of plants under normal and drought conditions provided insights into the molecular reprogramming caused by the alteration in JA-Ile content. Especially 35S::JAR1 plants displayed changes in expression of developmental genes related to growth and flowering. Further transcriptional differences pertained to drought-related adaptive systems, including stomatal density and aperture, but also reactive oxygen species production and detoxification. Analysis of wild type and jar1-11 plants carrying the roGFP-Orp1 sensor support a role of JA-Ile in the alleviation of methyl viologen-induced H2 O2 production. Our data substantiate a role of JA-Ile in abiotic stress response and suggest that JAR1-mediated increase in JA-Ile content primes Arabidopsis towards improved drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant , Isoleucine/metabolism , Oxylipins/metabolism
7.
Plant J ; 109(4): 1014-1027, 2022 02.
Article in English | MEDLINE | ID: mdl-34837294

ABSTRACT

Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.


Subject(s)
Aequorin/metabolism , Arabidopsis/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Aequorin/genetics , Animals , Arabidopsis/genetics , Chloroplasts/metabolism , Cytosol/metabolism , Homeostasis , Luminescent Proteins/metabolism , Seedlings/metabolism
8.
Plant Physiol ; 186(1): 125-141, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33793922

ABSTRACT

Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Arabidopsis/drug effects , Biosensing Techniques , Chloroplasts/drug effects , Herbicides/adverse effects , Oxidation-Reduction , Paraquat/adverse effects , Seedlings/drug effects , Seedlings/metabolism
9.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118948, 2021 04.
Article in English | MEDLINE | ID: mdl-33421535

ABSTRACT

Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.


Subject(s)
Calcium Signaling , Plants/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Organelles/metabolism , Plant Proteins/metabolism
10.
Mitochondrion ; 53: 224-233, 2020 07.
Article in English | MEDLINE | ID: mdl-32540403

ABSTRACT

Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.


Subject(s)
Adenosine Triphosphate/metabolism , Ion Channels/metabolism , Mitochondria/metabolism , Plants/metabolism , Biological Transport , Mitochondrial Membranes/metabolism , Plant Proteins/metabolism
11.
Front Plant Sci ; 10: 974, 2019.
Article in English | MEDLINE | ID: mdl-31417591

ABSTRACT

Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.

12.
Nat Plants ; 5(6): 581-588, 2019 06.
Article in English | MEDLINE | ID: mdl-31182842

ABSTRACT

Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium Channels/metabolism , Cation Transport Proteins/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Mitochondrial Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Cation Transport Proteins/genetics , Chloroplast Proteins/genetics , Chloroplasts/genetics , Escherichia coli , Gene Knockout Techniques , MAP Kinase Signaling System , Mitochondrial Proteins/genetics , Osmotic Pressure
13.
Biochim Biophys Acta Bioenerg ; 1860(6): 519-532, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31034800

ABSTRACT

Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/metabolism , Calcium/metabolism , Electron Transport/physiology , Photosynthesis/physiology , Amino Acid Sequence , Anabaena/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carbon/metabolism , Cations, Divalent/metabolism , Conserved Sequence , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Models, Molecular , Nitrogen/metabolism , Nitrogenase/metabolism , Protein Binding , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Transcriptome
14.
Plant Physiol ; 177(1): 38-51, 2018 05.
Article in English | MEDLINE | ID: mdl-29559589

ABSTRACT

Chloroplasts require a fine-tuned control of their internal Ca2+ concentration, which is crucial for many aspects of photosynthesis and for other chloroplast-localized processes. Increasing evidence suggests that calcium regulation within chloroplasts also may influence Ca2+ signaling pathways in the cytosol. To investigate the involvement of thylakoids in Ca2+ homeostasis and in the modulation of chloroplast Ca2+ signals in vivo, we targeted the bioluminescent Ca2+ reporter aequorin as a YFP fusion to the lumen and the stromal surface of thylakoids in Arabidopsis (Arabidopsis thaliana). Thylakoid localization of aequorin-based probes in stably transformed lines was confirmed by confocal microscopy, immunogold labeling, and biochemical analyses. In resting conditions in the dark, free Ca2+ levels in the thylakoid lumen were maintained at about 0.5 µm, which was a 3- to 5-fold higher concentration than in the stroma. Monitoring of chloroplast Ca2+ dynamics in different intrachloroplast subcompartments (stroma, thylakoid membrane, and thylakoid lumen) revealed the occurrence of stimulus-specific Ca2+ signals, characterized by unique kinetic parameters. Oxidative and salt stresses initiated pronounced free Ca2+ changes in the thylakoid lumen. Localized Ca2+ increases also were observed on the thylakoid membrane surface, mirroring transient Ca2+ changes observed for the bulk stroma, but with specific Ca2+ dynamics. Moreover, evidence was obtained for dark-stimulated intrathylakoid Ca2+ changes, suggesting a new scenario for light-to-dark-induced Ca2+ fluxes inside chloroplasts. Hence, thylakoid-targeted aequorin reporters can provide new insights into chloroplast Ca2+ storage and signal transduction. These probes represent novel tools with which to investigate the role of thylakoids in Ca2+ signaling networks within chloroplasts and plant cells.


Subject(s)
Arabidopsis/metabolism , Calcium/metabolism , Chloroplasts/metabolism , Thylakoids/metabolism , Aequorin/genetics , Aequorin/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Darkness , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Oxidative Stress , Plants, Genetically Modified , Salt Stress
15.
Mol Plant ; 10(4): 575-589, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28062321

ABSTRACT

The translocon on the outer membrane of mitochondria (TOM) facilitates the import of nuclear-encoded proteins. The principal machinery of mitochondrial protein transport seems conserved in eukaryotes; however, divergence in the composition and structure of TOM components has been observed between mammals, yeast, and plants. TOM9, the plant homolog of yeast Tom22, is significantly smaller due to a truncation in the cytosolic receptor domain, and its precise function is not understood. Here we provide evidence showing that TOM9.2 from Arabidopsis thaliana is involved in the formation of mature TOM complex, most likely by influencing the assembly of the pore-forming subunit TOM40. Dexamethasone-induced RNAi gene silencing of TOM9.2 results in a severe reduction in the mature TOM complex, and the assembly of newly imported TOM40 into the complex is impaired. Nevertheless, mutant plants are fully viable and no obvious downstream effects of the loss of TOM complex, i.e., on mitochondrial import capacity, were observed. Furthermore, we found that TOM9.2 can bind calmodulin (CaM) in vitro and that CaM impairs the assembly of TOM complex in the isolated wild-type mitochondria, suggesting a regulatory role of TOM9.2 and a possible integration of TOM assembly into the cellular calcium signaling network.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calmodulin-Binding Proteins/metabolism , Carrier Proteins/metabolism , Mitochondrial Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium Signaling/genetics , Calcium Signaling/physiology , Calmodulin-Binding Proteins/genetics , Carrier Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Protein Transport/genetics , Protein Transport/physiology
16.
J Exp Bot ; 67(13): 3985-96, 2016 06.
Article in English | MEDLINE | ID: mdl-27029353

ABSTRACT

Calmodulins (CaMs) are important mediators of Ca(2+) signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca(2+) signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Calcium-Binding Proteins/genetics , Membrane Proteins/genetics , Protein Sorting Signals/genetics , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phylogeny , Plants, Genetically Modified/metabolism , Sequence Alignment , Nicotiana/metabolism
17.
J Exp Bot ; 67(13): 3965-74, 2016 06.
Article in English | MEDLINE | ID: mdl-26893493

ABSTRACT

Calcium is used by plants as an intracellular messenger in the detection of and response to a plethora of environmental stimuli and contributes to a fine-tuned internal regulation. Interest in the role of different subcellular compartments in Ca(2+) homeostasis and signalling has been growing in recent years. This work has evaluated the potential participation of non-green plastids and chloroplasts in the plant Ca(2+) signalling network using heterotrophic and autotrophic cell suspension cultures from Arabidopsis thaliana plant lines stably expressing the bioluminescent Ca(2+) reporter aequorin targeted to the plastid stroma. Our results indicate that both amyloplasts and chloroplasts are involved in transient Ca(2+) increases in the plastid stroma induced by several environmental stimuli, suggesting that these two functional types of plastids are endowed with similar mechanisms for handling Ca(2+) A comparison of the Ca(2+) trace kinetics recorded in parallel in the plastid stroma, the surface of the outer membrane of the plastid envelope, and the cytosol indicated that plastids play an essential role in switching off different cytosolic Ca(2+) signals. Interestingly, a transient stromal Ca(2+) signal in response to the light-to-dark transition was observed in chloroplasts, but not amyloplasts. Moreover, significant differences in the amplitude of specific plastidial Ca(2+) changes emerged when the photosynthetic metabolism of chloroplasts was reactivated by light. In summary, our work highlights differences between non-green plastids and chloroplasts in terms of Ca(2+) dynamics in response to environmental stimuli.


Subject(s)
Arabidopsis/metabolism , Calcium/metabolism , Plastids/metabolism , Cells, Cultured , Chloroplasts/metabolism
18.
BMC Plant Biol ; 15: 238, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26444389

ABSTRACT

BACKGROUND: Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties. RESULTS: Recombinant plant APCs were functionally reconstituted into liposomes and their biochemical characteristics were determined by transport measurements using radiolabeled substrates. All three plant APCs were capable of ATP, ADP and phosphate exchange, however, high preference for ATP-Mg, as shown for orthologous carriers, was not detectable. By contrast, the obtained data suggest that in the liposomal system the plant APCs rather favor ATP-Ca as substrate. Moreover, investigation of a representative mutant APC protein revealed that the observed calcium effects on ATP transport did not primarily/essentially involve Ca(2+)-binding to the EF-hand motifs in the N-terminal domain of the carrier. CONCLUSION: Biochemical characteristics suggest that plant APCs can mediate net transport of adenine nucleotides and hence, like their pendants from animals and yeast, might be involved in the alteration of the mitochondrial adenine nucleotide pool. Although, ATP-Ca was identified as an apparent import substrate of plant APCs in vitro it is arguable whether ATP-Ca formation and thus the corresponding transport can take place in vivo.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium/pharmacology , Mitochondrial Proteins/metabolism , Phosphate Transport Proteins/metabolism , Adenosine Diphosphate/metabolism , Antiporters/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , Biological Transport/drug effects , Cations, Divalent/pharmacology , Egtazic Acid/pharmacology , Humans , Magnesium/pharmacology , Phosphate Transport Proteins/chemistry , Protein Structure, Tertiary , Recombination, Genetic/genetics , Time Factors
19.
Biochem J ; 458(2): 313-22, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24328790

ABSTRACT

Calcium is an important second messenger in eukaryotic cells that regulates many different cellular processes. To elucidate calcium regulation in chloroplasts, we identified the targets of calcium-dependent phosphorylation within the stromal proteome. A 73 kDa protein was identified as one of the most dominant proteins undergoing phosphorylation in a calcium-dependent manner in the stromal extracts of both Arabidopsis and Pisum. It was identified as TKL (transketolase), an essential enzyme of both the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate pathway. Calcium-dependent phosphorylation of both Arabidopsis isoforms (AtTKL1 and AtTKL2) could be confirmed in vitro using recombinant proteins. The phosphorylation is catalysed by a stroma-localized protein kinase, which cannot utilize GTP. Phosphorylation of AtTKL1, the dominant isoform in most tissues, occurs at a serine residue that is conserved in TKLs of vascular plants. By contrast, an aspartate residue is present in this position in cyanobacteria, algae and mosses. Characterization of a phosphomimetic mutant (S428D) indicated that Ser428 phosphorylation exerts significant effects on the enzyme's substrate saturation kinetics at specific physiological pH values. The results of the present study point to a role for TKL phosphorylation in the regulation of carbon allocation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Carbon/metabolism , Chloroplasts/metabolism , Serine/metabolism , Transketolase/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Chloroplasts/genetics , Molecular Sequence Data , Phosphorylation/physiology , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Serine/genetics , Transketolase/chemistry , Transketolase/genetics
20.
Plant Mol Biol ; 83(6): 607-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23943091

ABSTRACT

Matrix enzymes are imported into peroxisomes and glyoxysomes, a subclass of peroxisomes involved in lipid mobilization. Two peroxisomal targeting signals (PTS), the C-terminal PTS1 and the N-terminal PTS2, mediate the translocation of proteins into the organelle. PTS2 processing upon import is conserved in higher eukaryotes, and in watermelon the glyoxysomal processing protease (GPP) was shown to catalyse PTS2 processing. GPP and its ortholog, the peroxisomal DEG protease from Arabidopsis thaliana (AtDEG15), belong to the Deg/HtrA family of ATP-independent serine proteases with Escherichia coli DegP as their prototype. GPP existes in monomeric and dimeric forms. Their equilibrium is shifted towards the monomer upon Ca(2+)-removal and towards the dimer upon Ca(2+)-addition, which is accompanied by a change in substrate specificity from a general protease (monomer) to the specific cleavage of the PTS2 (dimer). We describe the Ca(2+)/calmodulin (CaM) mediated dimerization of AtDEG15. Dimerization is mediated by the CaM-like protein AtCML3 as shown by yeast two and three hybrid analyses. The binding of AtCML3 occurs within the first 25 N-terminal amino acids of AtDEG15, a domain containing a predicted CaM-binding motif. Biochemical analysis of AtDEG15 deletion constructs in planta support the requirement of the CaM-binding domain for PTS2 processing. Phylogenetic analyses indicate that the CaM-binding site is conserved in peroxisomal processing proteases of higher plants (dicots, monocots) but not present in orthologs of animals or cellular slime molds. Despite normal PTS2 processing activity, an atcml3 mutant exhibited reduced 2,4-DB sensitivity, a phenotype previously reported for the atdeg15 mutant, indicating similarly impaired peroxisome metabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Peroxisomes/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Calmodulin/metabolism , Chromosomes, Artificial, Yeast/genetics , Dimerization , Intracellular Calcium-Sensing Proteins/genetics , Intracellular Calcium-Sensing Proteins/metabolism , Intracellular Calcium-Sensing Proteins/physiology , Peptide Hydrolases/metabolism , Phylogeny , Recombinant Proteins , Sequence Alignment , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...