Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 153(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34357374

ABSTRACT

Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Potassium Channels, Calcium-Activated , Analgesics, Opioid , Calcium/metabolism , Humans , Loperamide/pharmacology
2.
J Gen Physiol ; 152(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32221543

ABSTRACT

Large-conductance Ca2+-activated K+ channels (BK channels) are activated by cytosolic calcium and depolarized membrane potential under physiological conditions. Thus, these channels control electrical excitability in neurons and smooth muscle by gating K+ efflux and hyperpolarizing the membrane in response to Ca2+ signaling. Altered BK channel function has been linked to epilepsy, dyskinesia, and other neurological deficits in humans, making these channels a key target for drug therapies. To gain insight into mechanisms underlying pharmacological modulation of BK channel gating, here we studied mechanisms underlying activation of BK channels by the biarylthiourea derivative, NS11021, which acts as a smooth muscle relaxant. We observe that increasing NS11021 shifts the half-maximal activation voltage for BK channels toward more hyperpolarized voltages, in both the presence and nominal absence of Ca2+, suggesting that NS11021 facilitates BK channel activation primarily by a mechanism that is distinct from Ca2+ activation. 30 µM NS11021 slows the time course of BK channel deactivation at -200 mV by ∼10-fold compared with 0 µM NS11021, while having little effect on the time course of activation. This action is most pronounced at negative voltages, at which the BK channel voltage sensors are at rest. Single-channel kinetic analysis further shows that 30 µM NS11021 increases open probability by 62-fold and increases mean open time from 0.15 to 0.52 ms in the nominal absence of Ca2+ at voltages less than -60 mV, conditions in which BK voltage sensors are largely in the resting state. We could therefore account for the major activating effects of NS11021 by a scheme in which the drug primarily shifts the pore-gate equilibrium toward the open state.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Tetrazoles/pharmacology , Thiourea/analogs & derivatives , Calcium/metabolism , Humans , Kinetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth/drug effects , Thiourea/pharmacology
3.
Sci Rep ; 8(1): 509, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323236

ABSTRACT

The large-conductance calcium-activated K+ (BK) channel contains two intracellular tandem Ca2+-sensing RCK domains (RCK1 and RCK2), which tetramerize into a Ca2+ gating ring that regulates channel opening by conformational expansion in response to Ca2+ binding. Interestingly, the gating ring's intersubunit assembly interface harbors the RCK2 Ca2+-binding site, known as the Ca2+ bowl. The gating ring's assembly interface is made in part by intersubunit coordination of a Ca2+ ion between the Ca2+ bowl and an RCK1 Asn residue, N449, and by apparent intersubunit electrostatic interactions between E955 in RCK2 and R786 and R790 in the RCK2 of the adjacent subunit. To understand the role of the intersubunit assembly interface in Ca2+ gating, we performed mutational analyses of these putative interacting residues in human BK channels. We found that N449, despite its role in Ca2+ coordination, does not set the channel's Ca2+ sensitivity, whereas E955 is a determinant of Ca2+ sensitivity, likely through intersubunit electrostatic interactions. Our findings provide evidence that the intersubunit assembly interface contains molecular determinants of Ca2+-sensitivity in BK channels.


Subject(s)
Calcium/metabolism , Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Binding Sites , Calcium Chloride/pharmacology , HEK293 Cells , Humans , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Large-Conductance Calcium-Activated Potassium Channels/genetics , Membrane Potentials/drug effects , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Domains , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Static Electricity
4.
Circ Res ; 117(12): 1001-12, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26515328

ABSTRACT

RATIONALE: G protein-coupled receptor kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is upregulated in heart failure. Although GRK5 is a critical regulator of cardiac G protein-coupled receptor signaling, recent data has uncovered noncanonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early heart failure after transverse aortic constriction (TAC) because of GRK5 nuclear accumulation. OBJECTIVE: In this study, we investigated the role of GRK5 in physiological, swimming-induced hypertrophy (SIH). METHODS AND RESULTS: Cardiac-specific GRK5 transgenic mice and nontransgenic littermate control mice were subjected to a 21-day high-intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed, including nuclear localization of GRK5, and compared with TAC. Unlike after TAC, swim-trained transgenic GRK5 and nontransgenic littermate control mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC transgenic GRK5 mice was able to preserve cardiac function. CONCLUSIONS: These data suggest that although nuclear-localized GRK5 is a pathological mediator after stress, this noncanonical nuclear activity of GRK5 is not induced during physiological hypertrophy.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/pathology , G-Protein-Coupled Receptor Kinase 5/physiology , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Cardiomegaly/genetics , Cells, Cultured , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...