Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Rev Neurol (Paris) ; 180(5): 417-428, 2024 May.
Article in English | MEDLINE | ID: mdl-38609750

ABSTRACT

The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Phenotype , Genetic Association Studies/methods , Proteins/genetics
2.
Rev Neurol (Paris) ; 179(9): 1020-1029, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735015

ABSTRACT

Relationships between genes and amyotrophic lateral sclerosis (ALS) have been widely accepted since the first studies highlighting pathogenic mutations in the SOD1 gene 30years ago. Over the last three decades, scientific literature has clearly highlighted the central role played by genetic factors in the disease, in both clinics and pathophysiology, as well as in therapeutics. This implies that health professionals who care for patients with ALS are increasingly faced with patients and relatives eager to have answers to questions related to the role of genetic factors in the occurrence of the disease and the risk for their relatives to develop ALS. In order to address these public health issues, the French ALS network FILSLAN proposed to the Haute Autorité de santé (HAS) the drafting of a French National Protocol (PNDS) on ALS genetics. This PNDS was developed according to the "method for developing a national diagnosis and care protocol for rare diseases" published by the HAS in 2012 (methodological guide for PNDS available on the HAS website: http://www.has-sante.fr/). This document aims to provide the most recent data on the role of genes in ALS and to detail the implications for diagnosis and care.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , Mutation
3.
Rev Neurol (Paris) ; 179(1-2): 54-60, 2023.
Article in English | MEDLINE | ID: mdl-36336493

ABSTRACT

Currently, only four molecules can be prescribed for amyotrophic lateral sclerosis (ALS), of which only one is approved worldwide for this indication, riluzole. Although progress in the therapeutic field remains unsatisfactory, we have to notice that genetics have undergone impressive improvements over the last three decades and, by extension, our knowledge of ALS cases linked to a pathogenic mutation that accounts for 10% of all cases (either sporadic or familiar) and is currently called hereditary ALS (hALS). In many neurological diseases treatment targeting pathogenic genes have significatively improved the natural profile of the disease: this is perfectly illustrated for familial amyloid neuropathy and spinal muscular atrophy. Because of these findings and the urgent need to find a cure for ALS, many trials have focused on familial ALS targeting the four most important genes linked to the disease: C9orf72, SOD1, TARDBP and FUS. We propose in this review an update on the perspectives of treatment that may be available in mid-term in hALS and will discuss in the last part the potential consequences for asymptomatic relatives of patients with a hALS and for ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Mutation , Riluzole
4.
Rev Neurol (Paris) ; 178(3): 196-205, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34243936

ABSTRACT

Primary Lateral Sclerosis (PLS) is an uncommon motor neuron disorder. Despite the well-recognisable constellation of clinical manifestations, the initial diagnosis can be challenging and therapeutic options are currently limited. There have been no recent clinical trials of disease-modifying therapies dedicated to this patient cohort and awareness of recent research developments is limited. The recent consensus diagnostic criteria introduced the category 'probable' PLS which is likely to curtail the diagnostic journey of patients. Extra-motor clinical manifestations are increasingly recognised, challenging the view of PLS as a 'pure' upper motor neuron condition. The post mortem literature of PLS has been expanded by seminal TDP-43 reports and recent PLS studies increasingly avail of meticulous genetic profiling. Research in PLS has gained unprecedented momentum in recent years generating novel academic insights, which may have important clinical ramifications.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Consensus , Humans , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/genetics , Motor Neurons/physiology
6.
Neurotherapeutics ; 18(1): 297-308, 2021 01.
Article in English | MEDLINE | ID: mdl-33021723

ABSTRACT

In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic dysfunction and neuro-inflammation. The fibroblast growth factor 21 (FGF21) plays an important role in the regulation of both phenomena and is a major hormone of energetic homeostasis. In this study, we aimed to determine the relevance of FGF21 pathway stimulation in a male mouse model of ALS (mutated SOD1-G93A mice) by using a pharmacological agonist of FGF21, R1Mab1. Mice (SOD1-WT and mutant SOD1-G93A) were treated with R1Mab1 or vehicle. Longitudinal data about clinical status (motor function, body weight) and biological parameters (including hormonal, immunological, and metabolomics profiles) were collected from the first symptoms to euthanasia at week 20. Multivariate models were performed to identify the main parameters associated with R1Mab1 treatment and to link them with clinical status, and metabolic pathways involving the discriminant metabolites were also determined. A beneficial clinical effect of R1Mab1 was revealed on slow rotarod (p = 0.032), despite a significant decrease in body weight of ALS mice (p < 0.001). We observed a decrease in serum TNF-α, MCP-1, and insulin levels (p = 0.0059, p = 0.003, and p = 0.01, respectively). At 16 weeks, metabolomics analyses revealed a clear discrimination (CV-ANOVA = 0.0086) according to the treatment and the most discriminant pathways, including sphingolipid metabolism, butanoate metabolism, pantothenate and CoA biosynthesis, and the metabolism of amino acids like tyrosine, arginine, proline, glycine, serine, alanine, aspartate, and glutamate. Mice treated with R1Mab1 had mildly higher performance on slow rotarod despite a decrease on body weight and could be linked with the anti-inflammatory effect of R1Mab1. These results indicate that FGF21 pathway is an interesting target in ALS, with a slight improvement in motor function combined with metabolic and anti-inflammatory effects.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Fibroblast Growth Factors/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Chemokine CCL2/blood , Disease Models, Animal , Fibroblast Growth Factors/immunology , Fibroblast Growth Factors/physiology , Interleukin-6/blood , Leptin/blood , Male , Metabolomics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Resistin/blood , Rotarod Performance Test , Signal Transduction , Transcriptome , Tumor Necrosis Factor-alpha/blood
7.
Sci Rep ; 10(1): 16824, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033346

ABSTRACT

The biological mechanisms involved in SARS-CoV-2 infection are only partially understood. Thus we explored the plasma metabolome of patients infected with SARS-CoV-2 to search for diagnostic and/or prognostic biomarkers and to improve the knowledge of metabolic disturbance in this infection. We analyzed the plasma metabolome of 55 patients infected with SARS-CoV-2 and 45 controls by LC-HRMS at the time of viral diagnosis (D0). We first evaluated the ability to predict the diagnosis from the metabotype at D0 in an independent population. Next, we assessed the feasibility of predicting the disease evolution at the 7th and 15th day. Plasma metabolome allowed us to generate a discriminant multivariate model to predict the diagnosis of SARS-CoV-2 in an independent population (accuracy > 74%, sensitivity, specificity > 75%). We identified the role of the cytosine and tryptophan-nicotinamide pathways in this discrimination. However, metabolomic exploration modestly explained the disease evolution. Here, we present the first metabolomic study in SARS-CoV-2 patients which showed a high reliable prediction of early diagnosis. We have highlighted the role of the tryptophan-nicotinamide pathway clearly linked to inflammatory signals and microbiota, and the involvement of cytosine, previously described as a coordinator of cell metabolism in SARS-CoV-2. These findings could open new therapeutic perspectives as indirect targets.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Cytosine/blood , Metabolome , Metabolomics/methods , Niacinamide/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Tryptophan/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Early Diagnosis , Female , France/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prognosis , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index
8.
Expert Opin Pharmacother ; 21(9): 1103-1110, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32242755

ABSTRACT

INTRODUCTION: To date, riluzole and edaravone are the only two drugs that have successfully passed clinical trials for the treatment of Amyotrophic Lateral Sclerosis (ALS). Unfortunately, both drugs exhibit very modest effects. Most other drugs have failed at phase III to show significant effects in phase III when tested in larger cohorts. This pattern necessitates improvements in the approach to ALS pharmacotherapy. AREAS COVERED: The authors discuss the two approved drugs, as well as several examples of drug candidates whose clinical trials did not demonstrate efficacy in phase III. Post-hoc analyses reveal that future clinical trials should include disease-staging procedures, longer-term trials to correctly assess survival, genetic studies of participants to aid in stratification, and more similarity between the protocols on preclinical models and clinical trials. Finally, they discuss the trials in process that demonstrate some of these suggestions and improvements. EXPERT OPINION: The approval of riluzole and edaravone was essentially a desperate attempt to provide urgent pharmacotherapy to the ALS community. To evolve toward more efficient therapies, we must conduct clinical trials with optimal stratification based on rapid/slow progressors and cognitive decline. Pharmaco-metabolomics should allow for the identification of biomarkers that are adapted for a given drug.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Rev Neurol (Paris) ; 176(3): 166-169, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932031

ABSTRACT

Pathophysiology of amyotrophic lateral sclerosis (ALS) remains partially understood even though it is accepted worldwide that motor neuron death results from a pluri-factorial process with a variable role of genetic factors. Although not distinguishable from a clinical point of view, familial forms of ALS (fALS, 10% of cases) and sporadic forms (sALS, 90% of cases) can be described. Since the identification of superoxide dismutase 1 gene (SOD1) mutations, more than 30 genes have been linked to fALS. Among these genes, five (C9ORF72, SOD1, TARDBP, FUS, TBK1) seem predominant with mutation frequencies of 40%, 20%, 5%, <5%, <5% in fALS and 6%, 3%, and <1% for the last three in sALS, respectively. The situation that classically leads to request genetic screening is the presence of a familial history of motor neuron disorders (MND) or fronto-temporal lobar dementia (FTLD). However, this dichotomy between fALS and sALS based on familial history can lead to mistakes since illegitimacy, ignorance of MND, FTD or psychiatric disorders within the family due to a familial censorship or lack of familial relationship, or a recessive autosomal inheritance could wrongly lead to failing to recognize a familial form. The significant development of genetic research and easier access to genetic tests in fALS increase the number of situations for which gene mutations are identified. The consequence is an increase in genetic requests from relatives of ALS patients who are eager to know their own genetic status and their own individual risk to develop ALS. Pre-symptomatic testing is thus becoming a daily issue in ALS Centers. This led us to propose a framework for such pre-symptomatic genetic testing for people at risk for developing ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Genetic Testing/standards , Amyotrophic Lateral Sclerosis/epidemiology , Asymptomatic Diseases , Confidentiality/standards , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Disclosure/standards , Early Diagnosis , Gene Frequency , Genetic Association Studies , Genetic Counseling/methods , Genetic Counseling/standards , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Prodromal Symptoms
10.
Article in English | MEDLINE | ID: mdl-30661401

ABSTRACT

Background: Amyotrophic lateral sclerosis is the most frequent motor neuron disorders (MND) in adults. The role of genetic factors is worldwide accepted, and currently, more than 30 genes have been linked to this disease. Genetics was also the matter of numerous studies in distal hereditary motor neuropathies (dHMN). GARS is classically linked to a predominant dHMN and, until now, no mutation has been described in GARS in other MND. Case Report: We report the case of a 70-year-old woman who developed a classical bulbar ALS phenotype. Owing to his familial history of ALS, a genetic screening was performed excluding the main genes linked to ALS and revealing a heterozygous missense mutation in GARS gene with a high probability of pathogenicity. Conclusion: This first description of mutation in GARS in ALS, extends once more the genetic overlap between ALS and other MND.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Glycine-tRNA Ligase/genetics , Mutation/genetics , Aged , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnostic imaging , Female , Genetic Testing , Humans , Magnetic Resonance Imaging , Models, Molecular , Mutation, Missense/genetics
12.
Ann Dermatol Venereol ; 145(8-9): 486-491, 2018.
Article in English | MEDLINE | ID: mdl-30056992

ABSTRACT

BACKGROUND: Capillary malformation-arteriovenous malformation syndrome (CM-AVM) is an autosomal dominant disorder first described in 2003. PATIENTS AND METHODS: An 8-year-old girl was referred for the progressive appearance of multiple capillary malformations in childhood, evocative of CM-AVM syndrome. Molecular analysis of the RASA1 gene revealed a mutation but further examinations did not show arteriovenous malformation. DISCUSSION: CM-AVM syndrome is an autosomal dominant disease caused by RASA1 gene mutations. More than 100 mutations have been identified to date. The EPHB4 gene may also be involved. Capillary malformations with particular characteristics are described. High-flow vascular malformations are associated in 18.5% of cases, with 7.1% being intracerebral. CONCLUSION: CM-AVM syndrome is a recent diagnostic entity. Diagnosis should be considered in the presence of multifocal capillary malformations. This diagnosis may lead to the detection of high-flow arteriovenous malformation and raises the question of specific management for these patients.


Subject(s)
Arteriovenous Malformations/genetics , Capillaries/abnormalities , Port-Wine Stain/genetics , Arteriovenous Malformations/pathology , Capillaries/pathology , Child , Female , Humans , Mutation , Port-Wine Stain/pathology , Syndrome , p120 GTPase Activating Protein/genetics
13.
Mol Neurobiol ; 55(8): 6480-6499, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29322304

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Genetic Predisposition to Disease , Nerve Degeneration/genetics , Proteolysis , Amyotrophic Lateral Sclerosis/therapy , Animals , Autophagy/genetics , Humans , Proteostasis/genetics
14.
J Pharm Biomed Anal ; 148: 273-279, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29059617

ABSTRACT

OBJECTIVES: Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. DESIGN AND METHODS: We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. RESULTS: Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. CONCLUSION: This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.


Subject(s)
Metabolic Networks and Pathways/physiology , Metabolome/physiology , Metabolomics/methods , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Animals , Chloroform/chemistry , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Magnetic Resonance Spectroscopy/methods , Methanol/chemistry , Mice , Tandem Mass Spectrometry/methods , Water/chemistry
16.
Sci Rep ; 7(1): 17652, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247199

ABSTRACT

Amyotrophic lateral sclerosis (ALS), the commonest adult-onset motor neuron disorder, is characterized by a survival span of only 2-5 years after onset. Relevant biomarkers or specific metabolic signatures would provide powerful tools for the management of ALS. The main objective of this study was to investigate the cerebrospinal fluid (CSF) lipidomic signature of ALS patients by mass spectrometry to evaluate the diagnostic and predictive values of the profile. We showed that ALS patients (n = 40) displayed a highly significant specific CSF lipidomic signature compared to controls (n = 45). Phosphatidylcholine PC(36:4), higher in ALS patients (p = 0.0003) was the most discriminant molecule, and ceramides and glucosylceramides were also highly relevant. Analysis of targeted lipids in the brain cortex of ALS model mice confirmed the role of some discriminant lipids such as PC. We also obtained good models for predicting the variation of the ALSFRS-r score from the lipidome baseline, with an accuracy of 71% in an independent set of patients. Significant predictions of clinical evolution were found to be correlated to sphingomyelins and triglycerides with long-chain fatty acids. Our study, which shows extensive lipid remodelling in the CSF of ALS patients, provides a new metabolic signature of the disease and its evolution with good predictive performance.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Ceramides/cerebrospinal fluid , Cerebrospinal Fluid/chemistry , Glucosylceramides/cerebrospinal fluid , Phosphatidylcholines/cerebrospinal fluid , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Animals , Biomarkers/cerebrospinal fluid , Computer Simulation , Disease Models, Animal , Female , Glucosylceramides/classification , Humans , Lipid Metabolism , Male , Mass Spectrometry , Mice , Mice, Transgenic , Middle Aged , Prognosis , Sphingomyelins/metabolism , Superoxide Dismutase/genetics
17.
J Neurol Sci ; 380: 124-127, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28870551

ABSTRACT

INTRODUCTION: Converging evidence highlights that lipid metabolism plays a key role in ALS pathophysiology. Dyslipidemia has been described in ALS patients and may be protective but peripheral lipoprotein subclasses have never been studied. MATERIAL AND METHODS: We collected sera from 30 ALS patients and 30 gender and age-matched controls. We analyzed 11 distinct lipoprotein subclasses by linear polyacrylamide gel electrophoresis (Lipoprint, Quantimetrix Corporation, USA). We also measured lipoprotein (a), apolipoprotein B, and apolipoprotein E levels. RESULTS: ALS patients had significant higher total cholesterol, HDL-cholesterol, and LDL-cholesterol levels than controls (p<0.0001, p=0.0007, and p=0.0065, respectively). The LDL-1 subfraction concentration was higher (1.03±0.41 vs. 0.71±0.28mmol/L; p=0.0006) and the IDL-B subfraction lower (6.5±2% vs. 8.0±2%; p=0.001) in ALS patients than controls. DISCUSSION: Our preliminary work confirmed the association between ALS and dyslipidemia. The low IDL-B levels may explain the hepatic steatosis frequently reported in ALS. The high levels of the cholesterol-rich LDL-1 subfraction is consistent with previously reported hypercholesterolemia. CONCLUSION: This study describes, for the first time, the distribution of serum lipoproteins in ALS patients, with low IDL-B and high LDL-1 subfraction level.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Lipoproteins, IDL/blood , Lipoproteins, LDL/blood , Aged , Biomarkers/blood , Cohort Studies , Dyslipidemias/blood , Female , Humans , Lipoproteins, HDL/blood , Male , Preliminary Data
19.
Rev Neurol (Paris) ; 173(5): 254-262, 2017 May.
Article in English | MEDLINE | ID: mdl-28449881

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by upper and lower motor neuron damage in the bulbar and spinal territories. Although the pathophysiology of ALS is still unknown, the involvement of genetic factors is no longer a subject of debate. Familial ALS (fALS) accounts for 10-20% of cases. Since the identification of the SOD1 gene, more than 20 genes have been described, of which four can explain >50% of familial cases. This review is an update focused on major aspects of the field of ALS genetics concerning both causative and susceptibility factors.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Humans , Superoxide Dismutase-1/genetics
20.
Eur J Clin Nutr ; 71(9): 1133-1135, 2017 09.
Article in English | MEDLINE | ID: mdl-28422121

ABSTRACT

Although the global benefits of gastrostomy have been proven in amyotrophic lateral sclerosis (ALS), the impact on biological parameters has not been explored yet. The aim of this preliminary work was to evaluate the modification of biological parameters in patients with ALS undergoing gastrostomy. We retrospectively collected clinical and biological data from 44 patients having undergone gastrostomy at three time points (T0, T1 and T2: before, at the time of and after gastrostomy). We examined the relationship between the biological parameters and disease progression. Variations of the concentrations of total cholesterol significantly differed before (T1-T0) vs those after gastrostomy (T2-T1; P=0.0044). The variations of total cholesterol and low-density lipoprotein cholesterol concentrations after gastrostomy were negatively associated with survival (P=0.0002). This study showed for the first time that patients with ALS fed quite exclusively by gastrostomy had decreased blood cholesterol after gastrostomy. We suggest that a restoration of normal lipid metabolism should be planned in patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/mortality , Cholesterol/blood , Enteral Nutrition , Aged , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/therapy , Case-Control Studies , Disease Progression , Female , France , Gastrostomy , Humans , Lipid Metabolism , Male , Middle Aged , Retrospective Studies , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...