Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5049, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698625

ABSTRACT

Mammary gland development begins with the appearance of epithelial placodes that invaginate, sprout, and branch to form small arborized trees by birth. The second phase of ductal growth and branching is driven by the highly invasive structures called terminal end buds (TEBs) that form at ductal tips at the onset of puberty. Ectodysplasin (Eda), a tumor necrosis factor-like ligand, is essential for the development of skin appendages including the breast. In mice, Eda regulates mammary placode formation and branching morphogenesis, but the underlying molecular mechanisms are poorly understood. Fibroblast growth factor (Fgf) receptors have a recognized role in mammary ductal development and stem cell maintenance, but the ligands involved are ill-defined. Here we report that Fgf20 is expressed in embryonic mammary glands and is regulated by the Eda pathway. Fgf20 deficiency does not impede mammary gland induction, but compromises mammary bud growth, as well as TEB formation, ductal outgrowth and branching during puberty. We further show that loss of Fgf20 delays formation of Eda-induced supernumerary mammary buds and normalizes the embryonic and postnatal hyperbranching phenotype of Eda overexpressing mice. These findings identify a hitherto unknown function for Fgf20 in mammary budding and branching morphogenesis.


Subject(s)
Ectodysplasins/metabolism , Fibroblast Growth Factors/genetics , Mammary Glands, Animal/growth & development , Sexual Maturation , Animals , Cell Proliferation , Female , Fibroblast Growth Factors/deficiency , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Mammary Glands, Animal/embryology , Mice, Inbred C57BL , Phenotype
2.
Sci Rep ; 7: 40806, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102330

ABSTRACT

An increased breast cancer risk during adulthood has been linked to estrogen exposure during fetal life. However, the impossibility of removing estrogens from the feto-maternal unit has hindered the testing of estrogen's direct effect on mammary gland organogenesis. To overcome this limitation, we developed an ex vivo culture method of the mammary gland where the direct action of estrogens can be tested during embryonic days (E)14 to 19. Mouse mammary buds dissected at E14 and cultured for 5 days showed that estrogens directly altered fetal mammary gland development. Exposure to 0.1 pM, 10 pM, and 1 nM 17 ß-estradiol (E2) resulted in monotonic inhibition of mammary buds ductal growth. In contrast, Bisphenol-A (BPA) elicited a non-monotonic response. At environmentally relevant doses (1 nM), BPA significantly increased ductal growth, as previously observed in vivo, while 1 µM BPA significantly inhibited ductal growth. Ductal branching followed the same pattern. This effect of BPA was blocked by Fulvestrant, a full estrogen antagonist, while the effect of estradiol was not. This method may be used to study the hormonal regulation of mammary gland development, and to test newly synthesized chemicals that are released into the environment without proper assessment of their hormonal action on critical targets like the mammary gland.


Subject(s)
Cell Proliferation/drug effects , Estradiol/pharmacology , Morphogenesis/drug effects , Animals , Benzhydryl Compounds/pharmacology , Estradiol/analogs & derivatives , Female , Fetus/cytology , Fulvestrant , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/pathology , Mice , Phenols/pharmacology , Pregnancy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
PLoS Genet ; 11(11): e1005676, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26581094

ABSTRACT

Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.


Subject(s)
Ectodysplasins/genetics , Mammary Glands, Human/growth & development , Morphogenesis/genetics , Wnt Signaling Pathway/genetics , Animals , Cell Differentiation/genetics , Ectodysplasins/biosynthesis , Ectodysplasins/metabolism , Embryo, Mammalian , Gene Expression Regulation, Developmental , Hair Follicle/growth & development , Humans , Mammary Glands, Human/cytology , Mice , NF-kappa B/genetics , NF-kappa B/metabolism
4.
J Mammary Gland Biol Neoplasia ; 18(2): 239-45, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23674216

ABSTRACT

The explant culture techniques of embryonic tissues allow continuous monitoring of organ growth and morphogenesis ex vivo. The effect of growth factors and other soluble molecules can be examined by applying them to the culture medium. Relatively few studies have reported application of tissue culture techniques to analysis of embryonic mammary glands. Here we describe a protocol for murine mammary rudiments that permits ex vivo development up to branching stage.


Subject(s)
Mammary Glands, Human/embryology , Mammary Glands, Human/growth & development , Organ Culture Techniques/methods , Animals , Humans , Mice
5.
J Mammary Gland Biol Neoplasia ; 18(2): 165-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23591968

ABSTRACT

The ectodysplasin (Eda) signaling pathway consists of a TNF-like ligand Eda, its receptor Edar, and an adaptor protein Edaradd and its activation leads to NF-κB mediated transcription. In humans, mutations in the EDA pathway genes cause hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair follicles, teeth, and several exocrine glands including the breast. Embryonic mammary gland development proceeds via placode, bud, bulb and sprout stages before the onset of branching morphogenesis. Studies on mouse models have linked Eda with two aspects of embryonic mammary gland morphogenesis: placode induction and ductal growth and branching. Here we summarize the current knowledge on the role of Eda/NF-κB in mammary gland development.


Subject(s)
Ectodysplasins/metabolism , Mammary Glands, Animal/embryology , Mammary Glands, Animal/metabolism , Mammary Glands, Human/embryology , Mammary Glands, Human/metabolism , NF-kappa B/metabolism , Animals , Ectodysplasins/genetics , Female , Gene Expression Regulation, Developmental , Humans , NF-kappa B/genetics , Signal Transduction
6.
Nature ; 483(7389): 324-7, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398444

ABSTRACT

One of the fascinating aspects of the history of life is the apparent increase in morphological complexity through time, a well known example being mammalian cheek tooth evolution. In contrast, experimental studies of development more readily show a decrease in complexity, again well exemplified by mammalian teeth, in which tooth crown features called cusps are frequently lost in mutant and transgenic mice. Here we report that mouse tooth complexity can be increased substantially by adjusting multiple signalling pathways simultaneously. We cultured teeth in vitro and adjusted ectodysplasin (EDA), activin A and sonic hedgehog (SHH) pathways, all of which are individually required for normal tooth development. We quantified tooth complexity using the number of cusps and a topographic measure of surface complexity. The results show that whereas activation of EDA and activin A signalling, and inhibition of SHH signalling, individually cause subtle to moderate increases in complexity, cusp number is doubled when all three pathways are adjusted in unison. Furthermore, the increase in cusp number does not result from an increase in tooth size, but from an altered primary patterning phase of development. The combination of a lack of complex mutants, the paucity of natural variants with complex phenotypes, and our results of greatly increased dental complexity using multiple pathways, suggests that an increase may be inherently different from a decrease in phenotypic complexity.


Subject(s)
Biological Evolution , Molar/anatomy & histology , Molar/metabolism , Signal Transduction , Activins/metabolism , Activins/pharmacology , Animals , Developmental Biology , Ectodysplasins/metabolism , Ectodysplasins/pharmacology , Hedgehog Proteins/metabolism , Hedgehog Proteins/pharmacology , Mice , Molar/drug effects , Molar/embryology , Mutation , Organ Culture Techniques , Phenotype , Signal Transduction/drug effects
7.
Proc Natl Acad Sci U S A ; 109(15): 5744-9, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22451941

ABSTRACT

Ductal growth of the mammary gland occurs in two distinct stages. The first round of branching morphogenesis occurs during embryogenesis, and the second round commences at the onset of puberty. Currently, relatively little is known about the genetic networks that control the initial phases of ductal expansion, which, unlike pubertal development, proceeds independent of hormonal input in female mice. Here we identify NF-κB downstream of the TNF-like ligand ectodysplasin (Eda) as a unique regulator of embryonic and prepubertal ductal morphogenesis. Loss of Eda, or inhibition of NF-κB, led to smaller ductal trees with fewer branches. On the other hand, overexpression of Eda caused a dramatic NF-κB-dependent phenotype in both female and male mice characterized by precocious and highly increased ductal growth and branching that correlated with enhanced cell proliferation. We have identified several putative transcriptional target genes of Eda/NF-κB, including PTHrP, Wnt10a, and Wnt10b, as well as Egf family ligands amphiregulin and epigen. We developed a mammary bud culture system that allowed us to manipulate mammary development ex vivo and found that recombinant PTHrP, Wnt3A, and Egf family ligands stimulate embryonic branching morphogenesis, suggesting that these pathways may cooperatively mediate the effects of Eda.


Subject(s)
Ectodysplasins/metabolism , Hormones/pharmacology , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Morphogenesis/drug effects , NF-kappa B/metabolism , Amphiregulin , Androgens/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , EGF Family of Proteins , Embryonic Development/drug effects , Epidermal Growth Factor/metabolism , Epigen , Epithelium/drug effects , Epithelium/growth & development , Epithelium/metabolism , Female , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Male , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Mice , Mice, Transgenic , Parathyroid Hormone-Related Protein/metabolism , Transcription, Genetic/drug effects , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...