Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1397156, 2024.
Article in English | MEDLINE | ID: mdl-38948356

ABSTRACT

Introduction: Risk governance is central for the successful and ethical operation of biobanks and the continued social license for being custodians of samples and data. Risks in biobanking are often framed as risks for participants, whereas the biobank's risks are often considered as technical ones. Risk governance relies on identifying, assessing, mitigating and communicating all risks based on technical and standardized procedures. However, within such processes, biobank staff are often involved tangentially. In this study, the aim has been to conduct a risk mapping exercise bringing biobank staff as key actors into the process, making better sense of emerging structure of biobanks. Methods: Based on the qualitative research method of situational analysis as well as the card-based discussion and stakeholder engagement processes, risk mapping was conducted at the biobank setting as an interactive engagement exercise. The analyzed material comprises mainly of moderated group discussions. Results: The findings from the risk mapping activity are framed through an organismic metaphor: the biobank as a growing, living organism in a changing environment, where trust and sustainability are cross-cutting elements in making sense of the risks. Focusing on the situatedness of the dynamics within biobanking activity highlights the importance of prioritizing relations at the core of risk governance and promoting ethicality in the biobanking process by expanding the repertoire of considered risks. Conclusion: With the organismic metaphor, the research brings the diverse group of biobank staff to the central stage for risk governance, highlighting how accounting for such diversity and interdependencies at the biobank setting is a prerequisite for an adaptive risk governance.

2.
Sci Transl Med ; 15(677): eabq6885, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599003

ABSTRACT

Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.


Subject(s)
Axons , Spinal Cord Injuries , Animals , Mice , Axons/physiology , Genetic Engineering , Nerve Regeneration/physiology , Proto-Oncogene Proteins B-raf/metabolism , Pyramidal Tracts/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Transcranial Magnetic Stimulation , Transcription Factors/metabolism , Zebrafish
3.
Mol Nutr Food Res ; 59(3): 501-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25488634

ABSTRACT

SCOPE: Hepatocellular carcinoma is one of the most frequently occurring cancers in humans. Recent human and animal studies have provided strong evidence for the effects of dietary deficiency of methyl donors on the development of liver cancer. However, the mechanisms underlying the effects of methyl-group deficiency on cancer risk are not properly understood. METHODS AND RESULTS: Male BALB/c and CBA/Ca mice were maintained for 8 weeks on a synthetic diet lacking in choline and folic acid. Using microarrays, the pattern of gene expression was evaluated in their liver, kidney, and spleen. Methyl-donor deficient diet induced profound changes in gene expression in the liver of treated animals, whereas the effects of the methyl-deficient diet on the pattern of gene expression in the kidney and spleen were negligible. Methyl-donor dietary restriction induced strain-independent upregulation of genes involved in cellular proliferation in liver. CONCLUSION: The results of our study provide a plausible explanation of why diets lacking methyl donors can induce the development of liver cancers in rodents and humans.


Subject(s)
Deficiency Diseases/genetics , Gene Expression Regulation/drug effects , Animals , Choline/pharmacology , Diet , Female , Folic Acid/pharmacology , Kidney/drug effects , Kidney/physiology , Liver/drug effects , Liver/physiology , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Male , Mice, Inbred BALB C , Mice, Inbred CBA , Spleen/drug effects , Spleen/physiology , Tissue Array Analysis
4.
Mutat Res ; 734(1-2): 1-4, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22569175

ABSTRACT

The results of recent human and animal studies have provided strong evidence for the epigenetic effects of a dietary deficiency of methyl donors such as folate, choline and methionine on cancer risk and some other common diseases. However, the mechanisms underlying the links between epigenetic alterations and disease remain elusive. To establish whether a methyl-donor deficient diet can result in long-term changes in mutation rate in treated animals and their offspring, BALB/c male mice were maintained for 8 weeks, from 4 weeks of age, on a synthetic diet lacking in choline and folic acid. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in sperm samples of treated males, as well as in sperm and brain of their first-generation offspring. ESTR mutation frequency in the germline of males sacrificed immediately after treatment or sampled 6 and 10 weeks after the end of dietary restriction did not significantly differ from that in age-matched control groups. The frequency of ESTR mutation in DNA samples extracted from sperm and brain of the first-generation offspring of treated mice was also similar to that in controls. The results of our study suggest that the effects of a methyl-donor deficient diet on mutation induction and transgenerational instability in mice are likely to be negligible.


Subject(s)
Choline Deficiency/genetics , Folic Acid Deficiency/genetics , Genomic Instability , Mutation , Animals , Brain Chemistry , Male , Mice , Mice, Inbred BALB C , Spermatozoa/chemistry , Tandem Repeat Sequences
5.
Mutat Res ; 664(1-2): 6-12, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19428375

ABSTRACT

Epidemiological evidence suggests that the deleterious effects of prenatal irradiation can manifest during childhood, resulting in an increased risk of leukaemia and solid cancers after birth. However, the mechanisms underlying the long-term effects of foetal irradiation remain poorly understood. This study was designed to analyse the impact of in utero irradiation on mutation rates at expanded simple tandem repeat (ESTR) DNA loci in directly exposed mice and their first-generation (F(1)) offspring. ESTR mutation frequencies in the germline and somatic tissues of male and female mice irradiated at 12 days of gestation remained highly elevated during adulthood, which was mainly attributed to a significant increase in the frequency of singleton mutations. The prevalence of singleton mutations in directly exposed mice suggests that foetal irradiation results in genomic instability manifested both in utero and during adulthood. The frequency of ESTR mutation in the F(1) offspring of prenatally irradiated male mice was equally elevated across all tissues, which suggests that foetal exposure results in transgenerational genomic instability. In contrast, maternal in utero exposure did not affect the F(1) stability. Our data imply that the passive erasure of epigenetic marks in the maternal genome can diminish the transgenerational effects of foetal irradiation and therefore provide important clues to the still unknown mechanisms of radiation-induced genomic instability. The results of this study offer a plausible explanation for the effects of in utero irradiation on the risk of leukaemia and solid cancers after birth.


Subject(s)
DNA Repeat Expansion/radiation effects , Embryo, Mammalian/radiation effects , Genomic Instability/radiation effects , Mutation , Prenatal Exposure Delayed Effects/genetics , Animals , Base Sequence , Crosses, Genetic , DNA Primers/genetics , Female , Germ-Line Mutation/radiation effects , Male , Mice , Mice, Inbred BALB C , Pedigree , Polymerase Chain Reaction , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...