Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174491, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969118

ABSTRACT

The escalating use of plastics in agriculture, driven by global population growth and increasing food demand, has concurrently led to a rise in Agricultural Plastic Waste (APW) production. Effective waste management is imperative, prompting this study to address the initial step of management, that is the quantification and localization of waste generated from different production systems in diverse regions. Focused on four Southern European countries (Italy, Spain, Greece, and Portugal) at the regional level, the study uses Geographic Information System (GIS), land use maps, indices tailored to each specific agricultural application and each crop type for plastic waste mapping. Furthermore, after the data was employed, it was validated by relevant stakeholders of the mentioned countries. The study revealed Spain, particularly the Andalusia region, as the highest contributor to APW equal to 324,000 tons per year, while Portugal's Azores region had the lowest estimate equal to 428 tons per year. Significantly, this research stands out as one of the first to comprehensively consider various plastic applications and detailed crop cultivations within the production systems, representing a pioneering effort in addressing plastic waste management in Southern Europe. This can lead further on to the management of waste in this area and the transfer of the scientific proposition to other countries.

2.
Sci Total Environ ; 948: 174697, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019280

ABSTRACT

The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.

3.
Sci Total Environ ; 946: 174325, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38942306

ABSTRACT

Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.

4.
J Environ Manage ; 294: 112927, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34107375

ABSTRACT

Green vertical systems have advantages in terms of building energy performance, but their environmental impact should be assessed in comparison to un-vegetated constructive systems. The aim of this paper was to evaluate the environmental loads of a green façade, which was compared to other building exterior wall systems. A Life Cycle Analysis approach was used to compare the green façade with constructive solutions commonly applied for enhancing the thermal insulation properties of the building exterior walls. The green façade and the other constructive solutions were characterised by an equivalent thermal behaviour. A green façade system prototype, realised with vegetation climbing on a steel frame, was used for the study. The comparison was carried out with exterior walls using insulation materials as expanded polystyrene, expanded cork and wood fibre. A double wall with an un-ventilated air gap was used as well. On average, the best environmental performance was recorded for the wall using cork as insulating material and for the double wall. The results highlighted the environmental criticalities of the green façade as the system having an environmental load among the most burdensome. Different scenarios of green façade with the use of alternative constructive solutions were hypothesized and compared by the life cycle analysis and life cycle impact assessment. The study showed that the adoption of a wooden frame in place of the steel one, as plant supporting structure, reduces the carbon footprint of the green façade by 58%. The environmental comparison was carried out also considering non-vegetated constructive solutions having an equivalent sun shading effect on the wall. The analysis showed that the green façade has the best environmental performance when compared with sun shading systems in aluminium or PVC.


Subject(s)
Environment
5.
Sci Total Environ ; 645: 1221-1229, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30248847

ABSTRACT

Polymeric protein-based biocomposites were used in this work as water dispersions to generate, in situ, biobased mulching coatings by spray technique, as alternative to low density polyethylene films for soil mulching. At the end of their lifetime, these biodegradable coatings degrade in soil thank to the microbial community that mineralizes them. Protein hydrolysates (PH) were derived from waste products of the leather industry, while poly(ethylene glycol) diglycidyl ether (PEG) and epoxidized soybean oil (ESO) were used to make the biodegradable spray coatings. A study under greenhouse condition was carried out using seedling test plots in order to investigate the performance of the spray coatings and their possible influence on some aspects of leaf growth, functionality and nutritional quality of lettuce (Lactuca sativa L., Mortarella selection Romanella variety Duende) and on soil properties. The biodegradable coatings showed the same good agronomic performances comparable with the ones of a commercial low density polyethylene mulching film, maintaining the mulching effect for the requested cultivation period and ensuring at the same time a similar rate of plant growth and dry matter accumulation. The research showed that 2 months after the tillage carried out at the end of the cultivation the amount of coating residues present in the soil was <5% of the initial weight of the biodegradable coatings. At the end of the field test, the soil mulched with the polyethylene film recorded an electrical conductivity value lower with respect to the soil mulched with the sprayed coatings, which release nutrients in the soil during their decomposition.


Subject(s)
Agriculture/methods , Soil/chemistry , Plant Leaves , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...