Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37765003

ABSTRACT

Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone (3a-r) or sulfonyl hydrazone (5a-l) fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds (3c and 3d) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system. Compound 3n, possessing two indole scaffolds, showed the highest activity against butyrylcholinesterase (BChE) and a high selectivity index (SI = 47.34), as well as a pronounced protective effect in H2O2-induced oxidative stress in SH-SY5Y cells. Moreover, compounds 3c, 3d, and 3n showed low neurotoxicity against malignant neuroblastoma cell lines of human (SH-SY5Y) and murine (Neuro-2a) origin, as well as normal murine fibroblast cells (CCL-1) that indicate the in vitro biocompatibility of the experimental compounds. Furthermore, compounds 3c, 3d, and 3n were capable of penetrating the blood-brain barrier (BBB) in the experimental PAMPA-BBB study. The molecular docking showed that compound 3c could act as a ligand to both MT1 and MT2 receptors, as well as to AchE and BchE enzymes. Taken together, those results outline compounds 3c, 3d, and 3n as promising prototypes in the search of innovative compounds for the treatment of AD-associated neurodegeneration with oxidative stress. This study demonstrates that hydrazone derivatives with melatonin and donepezil are appropriate for further development of new AChE/BChE inhibitory agents.

2.
Plants (Basel) ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903870

ABSTRACT

Cicerbita alpina (L.) Wallr. is a perennial herbaceous plant in the tribe Cichorieae (Lactuceae), Asteraceae family, distributed in the mountainous regions in Europe. In this study, we focused on the metabolite profiling and the bioactivity of C. alpina leaves and flowering heads methanol-aqueous extracts. The antioxidant activity of extracts, as well as inhibitory potential towards selected enzymes, involving in several human diseases, including metabolic syndrome (α-glucosidase, α-amylase, and lipase), Alzheimer's disease, (cholinesterases: AChE, BchE), hyperpigmentation (tyrosinase), and cytotoxicity were assessed. The workflow comprised ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). UHPLC-HRMS analysis revealed more than 100 secondary metabolites, including acylquinic, acyltartaric acids, flavonoids, bitter sesquiterpene lactones (STLs), such as lactucin, dihydrolactucin, their derivatives, and coumarins. Leaves showed a stronger antioxidant activity compared to flowering heads, as well as lipase (4.75 ± 0.21 mg OE/g), AchE (1.98 ± 0.02 mg GALAE/g), BchE (0.74 ± 0.06 mg GALAE/g), and tyrosinase (49.87 ± 3.19 mg KAE/g) inhibitory potential. Flowering heads showed the highest activity against α-glucosidase (1.05 ± 0.17 mmol ACAE/g) and α-amylase (0.47 ± 0.03). The obtained results highlighted C. alpina as a rich source of acylquinic, acyltartaric acids, flavonoids, and STLs with significant bioactivity, and therefore the taxon could be considered as a potential candidate for the development of health-promoting applications.

3.
Plants (Basel) ; 12(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679103

ABSTRACT

Herein, a chemophenetic significance, based on the phenolic metabolite profiling of three Senecio (S. hercynicus, S. ovatus, and S. rupestris) and two Jacobaea species (J. pancicii and J. maritima), coupled to morphometric data, is presented. A set of twelve morphometric characters were recorded from each plant species and used as predictor variables in a linear discriminant analysis (LDA) model. From a total 75 observations (15 from each of the five species), the model correctly assumed their species' membership, except for 2 observations. Among the studied species, S. hercynicus and S. ovatus presented the greatest morphological similarity. A phytochemical profiling of phenolic specialized metabolites by UHPLC-Orbitrap-MS revealed 46 hydroxybenzoic, hydroxycinnamic, and acylquinic acids and their derivatives, 1 coumarin and 21 flavonoids. Hierarchical and PCA clustering applied to the phytochemical data corroborated the similarity of S. hercynicus and S. ovatus, observed in the morphometric analysis. This study contributes to the phylogenetic relationships between the tribe Senecioneae taxa and highlights the chemophenetic similarity/dissimilarity of the studied species belonging to Senecio and Jacobaea genera.

4.
Molecules ; 29(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38202787

ABSTRACT

Sideritis scardica Griseb, also known as "mountain tea" and "Olympus tea" (Lamiaceae family) is an endemic plant from the mountainous regions of the Balkan Peninsula. In this study, we focused on an in-depth phytochemical analysis of S. scardica infusion using ultra-high-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UHPLC-HRMS). Quantitative determination of the main secondary metabolites was carried out by UHPLC-HRMS analyses using the external standard method. The results revealed more than 100 metabolites, including five sugar acids and saccharides, 21 carboxylic, hydroxybenzoic, hydroxycinnamic acids, and derivatives, 15 acylquinic acids, 10 phenylpropanoid glycosides, four iridoid glycosides, 28 flavonoids, seven fatty acids, and four organosulfur compounds. Furthermore, a dereplication and fragmentation patterns of five caffeic acids oligomers and four acylhexaric acids was performed for the first time in S. scardica. Regarding the quantitative analysis, the phenylethanoid verbascoside (53) (151.54 ± 10.86 mg/g lyophilized infusion, li), the glycosides of isoscutellarein (78) (151.70 ± 14.78 mg/g li), methylisoscutelarein (82) (107.4 ± 9.07 mg/g li), and hypolaetin (79) (78.33 ± 3.29 mg/g li), as well as caffeic acid (20) (87.25 ± 6.54 mg/g li), were found to be the major compounds in S. scardica infusion. The performed state-of-the-art phytochemical analysis of S. scardica provides additional knowledge for the chemical constituents and usage of this valuable medicinal plant.


Subject(s)
Lamiaceae , Sideritis , Chromatography, High Pressure Liquid , Carboxylic Acids , Iridoid Glycosides , Tea
5.
Plants (Basel) ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616151

ABSTRACT

Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol−aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties.

6.
Plants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34685855

ABSTRACT

The widespread genus Cirsium Mill. (Asteraceae) is renowned in traditional medicine. In the present study, an innovative biochemometric-assisted metabolite profiling of the flower heads, aerial parts and roots of Cirsium appendiculatum Griseb. (Balkan thistle) in relation to their antioxidant and enzyme inhibitory potential was developed. The workflow combines ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) with partial least-square analysis to discriminate the herbal extracts and identify the most prominent biological activities. The annotation and dereplication of 61 secondary metabolites were evidenced, including 15 carboxylic (including hydroxybenzoic and hydroxycinnamic) acids and their glycosides, 11 acylquinic acids, 26 flavonoids and 9 fatty acids. All compounds were reported for the first time in the studied species. The root extract revealed the highest cupric and ferric reducing power (618.36 ± 5.17 mg TE/g and 269.89 ± 8.50 mg TE/g, respectively) and antioxidant potential in phosphomolybdenum (3.36 ± 0.15 mmol TE/g) as well as the most prominent enzyme inhibitory potential on α-glucosidase (0.72 ± 0.07 mmol ACAE/g), acetylcholinesterase (4.93 ± 0.25 mg GALAE/g) and butyrylcholinesterase (3.80 ± 0.26 mg GALAE/g). Nevertheless, the flower heads were differentiated by their higher metal chelating activity (32.53 ± 3.51 mg EDTAE/g) and total flavonoid content (46.59 ± 0.89 mgRE/g). The partial least-square discriminant and heat-map analysis highlighted the root extract as the most active and a promising source of bioactive compounds for the therapeutic industry.

7.
Plants (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579453

ABSTRACT

Oleraceins are a class of indoline amide glycosides found in Portulaca oleracea L. (Portulacaceae), or purslane. These compounds are characterized by 5,6-dihydroxyindoline-2-carboxylic acid N-acylated with cinnamic acid derivatives, and many are glucosylated. Herein, hydromethanolic extracts of the aerial parts of purslane were subjected to UHPLC-Orbitrap-MS analysis, in negative ionization mode. Diagnostic ion filtering (DIF), followed by diagnostic difference filtering (DDF), were utilized to automatically filter out MS data and select plausible oleracein structures. After an in-depth MS2 analysis, a total of 51 oleracein compounds were tentatively identified. Of them, 26 had structures, matching one of the already known oleracein, and the other 25 were new, undescribed in the literature compounds, belonging to the oleracein class. Moreover, based on selected diagnostic fragment ions, clustering algorithms and visualizations were utilized. As we demonstrate, clustering methods provide valuable insights into the mass fragmentation elucidation of natural compounds in complex mixtures.

8.
Food Chem Toxicol ; 132: 110678, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31323233

ABSTRACT

Geigeria alata Benth. & Hook.f. ex Oliv. & Hiern (Asteraceae) is used in Sudanese folk medicine for treatment of diabetes. The study aimed to estimate the acute oral toxicity of trans-3,5-dicaffeoylquinic acid (3,5-diCQA) from G. alata roots and to assess its antihypeglycemic, antioxidant and antihypertensive effects on chemically-induced diabetic spontaneously hypertensive rats (SHRs). The structure of 3,5-diCQA was established by NMR and HRMS spectra. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin. 3,5-diCQA was slightly toxic with LD50 = 2154 mg/kg. At 5 mg/kg 3,5-diCQA reduced significantly (p < 0.05) the blood glucose levels by 42%, decreased the blood pressure by 22% and ameliorated the oxidative stress biomarkers reduced glutathione, malondialdehyde, and serum biochemical parameters. The beneficial effect on antioxidant enzymes was evidenced by the elevated glutathione peroxidase, glutathione reductase, and glutathione S-transferase activitiy in the livers of diabetic animals. 3,5-diCQA prevents the histopathological changes related to diabetes and hypertension. 3,5-diCQA was more potent α-glucosidase inhibitor (IC50 27.24 µg/mL) than acarbose (IC50 99.77 µg/mL). The antihyperglycemic action of the compound was attributed to the α-glucosidase inhibition. The beneficial effects of 3,5-diCQA on streptozotocin-induced diabetic hypertensive rats support the traditional use of G.alata for the management of diabetes.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Essential Hypertension/complications , Geigeria/chemistry , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Blood Pressure/drug effects , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Essential Hypertension/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Liver/metabolism , Male , Oxidative Stress , Rats , Rats, Inbred SHR , Urinalysis
9.
Anticancer Agents Med Chem ; 19(10): 1276-1284, 2019.
Article in English | MEDLINE | ID: mdl-30848212

ABSTRACT

BACKGROUND: The 1,8-Naphthalimides constitute an important class of biologically active, DNAbinding compounds. There are no available data on the synthesis of 1,8-naphthalimide derivatives with nonprotein amino acids and their biological activity. The aim of this paper was to determine the synthesis, structural characterization and cytotoxic activity of new 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cycloalkane-1- carboxylic acids with 5-, 6-, 7-, 8- and 12-membered rings as well as 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)- yl)adamantane-2-carboxylic acid and 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-1,2,3,4-tetrahydronaphthalene- 1-carboxylic acid. METHODS: The target compounds were obtained by an interaction of 1,8-naphthalic anhydride with a series of non-protein amino acids. The optimized geometry and harmonic vibrational frequencies have been calculated by DFT employing B3LYP functional using 6-31G(d,p) basis set. An ab initio (MP2 and Hartee-Fock) and DFT (different functionals) using several basis sets have been applied for NMR calculations. The cytotoxic effects of the synthesized compounds are assessed against two human tumor cell lines, namely K-562 (chronic myeloid leukemia) and HUT-78 (cutaneous T-cell lymphoma) after 72 h exposure, using the MTT-dye reduction assay. The apoptogenic effects and the ability to modulate the NFκB-signaling pathways were determined using commercially available ELISA kits. RESULTS: All compounds inhibited the growth of malignant cells at micromolar concentrations whereby compound 4b (1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cyclohexane-1-carboxylic acid) demonstrated superior activity in both cell lines with IC50 values comparable to those of the reference anticancer drug melphalan. CONCLUSION: New 1,8-naphthalimide derivatives with non-protein amino acids were successfully synthesized. Quantum-chemical calculations were performed to elucidate the structure of the newly synthesized compounds. There is a proper alignment between theoretical and experimental results. The cytotoxicity of the synthesized products against two human tumor cell lines, namely K-562 and HUT-78 was evaluated. All compounds inhibited the growth of malignant cells at micromolar concentrations. The pharmacodynamics evaluation of compound 4b showed that its cytotoxicity is mediated by induction of apoptosis and inhibition of NFκB-signaling.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemical synthesis , Naphthalimides/chemical synthesis , Naphthalimides/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Density Functional Theory , Humans , Models, Molecular , Molecular Structure
10.
J Pharm Biomed Anal ; 159: 567-581, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30059856

ABSTRACT

Glucuronide Oleanane-type Triterpenoid Carboxylic Acid 3, 28-Bidesmosides (GOTCAB) saponins are bioactive natural compounds spread in Caryophyllidae. The high complexity of GOTCAB occurring as closely related isobaric and positional isomers is a challenge in their separation and identification. A new liquid chromatography - high resolution Orbitrap mass spectrometry acquisition strategy would be important for the structural elucidation of GOTCAB in plant extracts. In this study, the fragmentation behaviors of GOTCAB from methanol-aqueous root extract of Gypsophila glomerata Pall ex M. B. (Caryophyllaceae) were investigated using ultra high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high resolution mass spectrometry (HRMS). A new saponin was isolated and its structure was established by 1D and 2D-NMR spectroscopic experiments as 3-O-ß-D-galactopyranosyl-(1→2)-[α-L-arabinopyranosyl-(1→3)]-ß-D-glucuronopyranosyl gypsogenin 28-O-α-L-arabinopyranosyl-(1→3)-[ß-D-xylopyranosyl-(1→4)]-α-L-rhamnopyranosyl-(1→2)-ß-D-fucopyranosyl ester. On the basis of the accurate mass measurements, fragmentation patterns in MS/MS analyses and comparison with previously isolated authentic references, a total of 41 GOTCAB saponins were identified or tentatively elucidated in G. glomerata roots, including 14 pairs of isobars. Possible fragmentation pathways for three groups of GOTCAB are suggested. The group I appeared to be GOTCAB of gypsogenin with two carbohydrate chains: a branched trisaccharide at C-3 and tri- to hexa-saccharide attached to C-28 of the aglycone through a deoxyhexose residue. Saponins with monoacetylated (group II) or sulphated (group III) C-28 chain were evidenced, as well as quillaic and oleanolic acid GOTCAB. Sixteen GOTCAB were previously not described. The content of Gypsophila prosaponins, gypsogenin 3-O-glucuronide (7.4079 ±â€¯0.0723 mg/g dry weight, dw) and quillaic acid 3-O-glucuronide (4.4593 ±â€¯0.1207 mg/g dw), was determined by solid phase extraction - high-performance liquid chromatography (SPE-HPLC). In this study is presented the first systematic investigation on the fragmentation patterns and diagnostic fingerprints of the fragment ions in the MS/MS spectra of the gypsogenin -, quillaic acid - and oleanolic acid - bidesmosides. A LC-HRMS Orbitrap acquisition strategy could give an insight in the GOTCAB containing taxa.


Subject(s)
Caryophyllaceae/chemistry , Chromatography, High Pressure Liquid/methods , Saponins/analysis , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Roots/chemistry , Saponins/isolation & purification
11.
J Pharm Biomed Anal ; 155: 56-69, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29625258

ABSTRACT

Methanol-aqueous extracts from the aerial parts of Gypsophila glomerata (GGE), G. trichotoma (GTE) and G. perfoliata (GPE) were investigated for antioxidant potential using different in vitro models, as well as for phenolic and flavonoid contents. The possible anti-cholinesterase, anti-tyrosinase, anti-amylase and anti-glucosidase activities were also tested. The flavonoid variability was analyzed using ultra high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high resolution mass spectrometry (HRMS). Eleven C-glycosyl flavones and 4 O-glycosyl flavonoids, including 2"-O-pentosyl-6-C-hexosyl-apigenin/methylluteolin, as well as their mono(di)-acetyl derivatives were found in GGE. Both GGE and GTE shared 2"-pentosyl-6-C-hexosyl-luteolin together with the common saponarin, homoorientin, orientin, isovitexin and vitexin, while di C-glycosyl flavones were evidenced only in GPE. The highest radical scavenging in both ABTS and DPPH assays was noted in GPE, as well as ferric and cupric reducing abilities. However, GTE had the strongest metal chelating activity (17.44 ±â€¯0.51 mg EDTAE/g extract). GPE and GGE were more potent as acetylcholinesterases inhibitors witnessed by 2.09 ±â€¯0.02 mg GALAE/g extract and 1.59 ±â€¯0.09 mgGALAE/g extract, respectively. All flavonoids were found in G. glomerata for the first time. Therefore, further isolation and structural elucidation of newly described acetylated flavonoids are needed in order to determine their relevance in the beneficial properties of the plant.


Subject(s)
Caryophyllaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Amylases/antagonists & inhibitors , Antioxidants/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, High Pressure Liquid/methods , Flavones/chemistry , Flavones/pharmacology , Glucosidases/antagonists & inhibitors , Mass Spectrometry/methods , Monophenol Monooxygenase/antagonists & inhibitors , Phenols/chemistry , Phenols/pharmacology
12.
Bioorg Med Chem Lett ; 27(13): 2996-3002, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28512022

ABSTRACT

A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5b-g and coumarin containing hydrazide-hydrazone analogues 4a-e was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28-1.69µM, which were comparable to those of isoniazid. The cytotoxicity (IC50>200µM) to the "normal cell" model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5b-e, was noticeably milder compared to that of their hydrazone analogues 4a-e (IC50 33-403µM). Molecular docking studies on compounds 4a-e and 5b-g were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrazines/pharmacology , Hydrazones/pharmacology , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Pyrazolones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Hydrazines/chemistry , Hydrazones/chemistry , Molecular Structure , Mycobacterium tuberculosis/cytology , Pyrazolones/chemical synthesis , Pyrazolones/chemistry , Structure-Activity Relationship
13.
Postgrad Med ; 128(8): 790-796, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27700189

ABSTRACT

OBJECTIVES: The purpose of this study was to reveal different subgroups of patients with at least moderate risk of developing diabetes in the next 10 years, based on clustering of cardiovascular risk factors. METHODS: We performed a one-center cross-sectional study of adult patients (n = 109, median age 45 years) with Findrisc score of above 11 out of 26 maximum. We included in the cluster analysis anthropometrics, lipid and carbohydrate parameters obtained in oral glucose tolerance test (OGTT), insulin, C-peptide, creatinine, C-reactive protein, liver enzymes, beta-cell function, insulin sensitivity and insulin resistance (HOMA calculations). We also evaluated the atherogenic index of plasma (AIP). RESULTS: We identified three metabolic phenotypes of patients with at least moderate Findrisc score-one 'male' (cluster AM, n = 24), and two 'female' phenotypes (cluster AW, n = 9 and cluster BW, n = 76). Men were almost homogenous for their metabolic phenotype, with lower fat percentage than women (p < .05). Most of the women (cluster BW, n = 76) presented with better metabolic pattern i.e. lower insulin resistance, lower C-reactive protein, lower degree of obesity and visceral fat rating (p < .05), despite the higher fat percentage (p < .05). Some of the women, however, (cluster AW, n = 9) presented with parameters very similar to that of men (cluster AM) and significantly higher than in cluster BW. Despite the lack of significant differences in lipid parameters among clusters, AIP was significantly lower in cluster BW (p < .05). CONCLUSION: Most of the women presented with clearly less unfavorable atherogenic risk than men. Two different phenotypes of obese women with at least moderate Findrisc score were revealed, and the level of inflammation seems to be the main discriminant factor. Larger prospective studies are required to elucidate whether those are really two different pathogenically phenotypes or if they belong to the same phenotype's continuum.


Subject(s)
Cardiovascular Diseases/epidemiology , Obesity/epidemiology , Adult , Aged , Atherosclerosis/epidemiology , Blood Glucose , Body Weights and Measures , C-Reactive Protein , Cross-Sectional Studies , Diabetes Mellitus, Type 2/epidemiology , Diet , Exercise , Female , Glucose Tolerance Test , Humans , Hypertension/epidemiology , Insulin Resistance , Lipids/blood , Male , Middle Aged , Prospective Studies , Risk Factors
14.
Chem Biol Drug Des ; 87(3): 335-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26502828

ABSTRACT

The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol.


Subject(s)
Amino Acids/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Drug Design , Theophylline/chemical synthesis , Antitubercular Agents/chemistry , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Theophylline/chemistry , Theophylline/pharmacology
15.
Bioorg Med Chem Lett ; 24(14): 3043-5, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24878196

ABSTRACT

A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 µM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.


Subject(s)
Amino Acids/chemistry , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Theophylline/analogs & derivatives , Antitubercular Agents/chemical synthesis , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Theophylline/chemical synthesis , Theophylline/chemistry , Theophylline/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...