Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Persoonia ; 45: 221-249, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34456378

ABSTRACT

Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ITS2 sequences were successfully obtained from 24 specimens identified as 'Nectria' sensu Saccardo (including 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classification is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names.

2.
Mycorrhiza ; 27(4): 331-343, 2017 May.
Article in English | MEDLINE | ID: mdl-27942957

ABSTRACT

Arbuscular mycorrhizal fungal (AMF) communities have been demonstrated to respond to a variety of biotic and abiotic factors, including various aspects of land management. Numerous studies have specifically addressed the impact of land use on AMF communities, but usually have been confined to one or a few sites. In this study, soil AMF assemblages were described in four different long-term observatories (LTOs) across Europe, each of which included a site-specific high-intensity and a low-intensity land use. AMF communities were characterized on the basis of 454 sequencing of the internal transcribed spacer 2 (ITS2) rDNA region. The primary goals of this study were (i) to determine the main factors that shape AMF communities in differentially managed sites in Europe and (ii) to identify individual AMF taxa or combinations of taxa suitable for use as biomarkers of land use intensification. AMF communities were distinct among LTOs, and we detected significant effects of management type and soil properties within the sites, but not across all sites. Similarly, indicator species were identified for specific LTOs and land use types but not universally for high- or low-intensity land uses. Different subsets of soil properties, including several chemical and physical variables, were found to be able to explain an important fraction of AMF community variation alone or together with other examined factors in most sites. The important factors were different from those for other microorganisms studied in the same sites, highlighting particularities of AMF biology.


Subject(s)
Grassland , Mycorrhizae/classification , Soil Microbiology , Agriculture/methods , Climate , DNA, Ribosomal Spacer/genetics , Europe
3.
Eur J Neurosci ; 14(3): 513-21, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11553301

ABSTRACT

ErbB-4 is expressed by the periglomerular and the mitral/tufted cells of the adult mouse olfactory bulb (OB) and in the present work we tested whether this expression is regulated by the olfactory nerve input to the OB. Reversible zinc sulphate lesions of the olfactory mucosa were made in adult mice and the deafferented OB analysed by immunohistochemistry, Western blotting and semiquantitative RT-PCR. Following deafferentation, the expression of erbB-4, erbB-2 and neuregulin-1 (NRG-1) mRNAs in the OB was altered. At early stages (7-14 days) after lesion the levels of expression of olfactory marker protein (OMP), tyrosine hydroxylase (TH), erbB-4 and NRG-1 mRNAs were decreased, whilst expression of erbB-2 increased and that of NRG-2 was not significantly altered. We observed at least two distinct time courses for these expression changes. The lowest amounts of mRNA for erbB-4 and NRG-1 were observed at day 7 after lesion, whilst mRNAs for TH and OMP were lowest at day 14. At day 28 after the lesion, when olfactory receptor neuron axons had reinnervated the olfactory bulb, the expression levels of OMP, TH, erbB-2, erbB-4 and NRG-1 were identical to control values. These results indicate that the expression of erbB-4 mRNA and protein in periglomerular and mitral cells is controlled by peripheral olfactory innervation. The tight correlation in NRG-1 and erbB-4 expression levels also suggests a possible functional link that deserves further exploration.


Subject(s)
ErbB Receptors/biosynthesis , Neuregulins/biosynthesis , Olfactory Bulb/metabolism , Peripheral Nerves/physiology , Animals , Astringents , Blotting, Western , Denervation , ErbB Receptors/genetics , Female , Immunohistochemistry , Mice , Nerve Degeneration/chemically induced , Neuregulins/genetics , Olfactory Mucosa/physiology , Olfactory Nerve/physiology , Precipitin Tests , Receptor, ErbB-4 , Transcription, Genetic , Zinc Sulfate
4.
Cell Mol Biol (Noisy-le-grand) ; 45(3): 293-301, 1999 May.
Article in English | MEDLINE | ID: mdl-10386786

ABSTRACT

Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.


Subject(s)
ErbB Receptors/metabolism , Olfactory Bulb/metabolism , Proto-Oncogene Proteins/metabolism , Administration, Intranasal , Animals , Epithelium/drug effects , Epithelium/metabolism , Female , Immunohistochemistry , Mice , Mice, Inbred Strains , Nerve Degeneration/chemically induced , Nerve Tissue Proteins/metabolism , Neurons, Afferent/drug effects , Olfactory Bulb/drug effects , Olfactory Marker Protein , Olfactory Nerve/drug effects , Olfactory Nerve/metabolism , Receptor, ErbB-3 , Receptor, ErbB-4 , Zinc Sulfate
5.
Brain Res Dev Brain Res ; 115(1): 49-55, 1999 Jun 08.
Article in English | MEDLINE | ID: mdl-10366702

ABSTRACT

Apoptotic cells were detected in the mouse olfactory epithelium (OE) at different embryonic and postnatal stages by in situ nick translation (ISNT) and Tdt-mediated dUTP nick end-labeling (TUNEL) techniques. During development, the apoptotic process presented two peaks. One at E12 during the invagination of the olfactory placode and the second at E16 corresponding to olfactory axon synaptogenesis. Then, from E18, a sharp decrease in the number of apoptotic cells was observed and at E19 the apoptotic index reached low values that were maintained in postnatal stages, P1 and P8, and in the adult. Apoptotic nuclei belonged to mature as well as immature olfactory receptor neurons (ORNs). Indeed, double-labeling experiments evidenced apoptotic neurons immunopositive for olfactory marker protein (OMP), carnosine and GAP-43. According to our data, two apoptotic phases occur during early development. One is involved in the morphogenesis of the OE when this last is not yet, or poorly, connected to its target, the olfactory bulb (OB). The second peak of apoptosis is more closely dependent on the interplay between OE and OB.


Subject(s)
Apoptosis , Olfactory Mucosa/pathology , Animals , Cellular Senescence/physiology , Embryonic and Fetal Development , In Situ Nick-End Labeling , Mice , Morphogenesis , Neurons/pathology , Olfactory Mucosa/embryology , Olfactory Mucosa/growth & development
6.
Eur J Neurosci ; 8(3): 521-9, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8963443

ABSTRACT

Ciliary neurotrophic factor (CNTF) is a potent survival factor for several neuronal populations. It is expressed postnatally by Schwann cells in the peripheral nervous system and by some glial and neuronal cells in the central nervous system. We used the promoter of the neurofilament light chain gene to produce transgenic mice that express CNTF in neurons from the beginning of neuronal differentiation. These transgenic animals may represent a suitable model to identify neuronal cell types responsive to CNTF in vivo and to study the mechanism of action of this neurotrophic factor. We show that dorsal root ganglion neurons of transgenic mice expressing CNTF in neurons are protected from apoptosis during embryonic development: 40% of these cells undergo apoptosis between embryonic day 12.5 and postnatal day 5 in transgenic mice whereas 60% do so in control animals. However, protection from apoptosis does not result in an increase in the total number of neurons at the end of development. We discuss our results with regard to CNTF potentialities in vivo and the significance of programmed cell death during development.


Subject(s)
Cell Count/drug effects , Ganglia, Spinal/drug effects , Gene Expression/genetics , Nerve Tissue Proteins/pharmacology , Nervous System/drug effects , Animals , Apoptosis , Ciliary Neurotrophic Factor , Immunohistochemistry , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...