Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Virol ; 65(2): 181-191, 2021.
Article in English | MEDLINE | ID: mdl-34130469

ABSTRACT

A promising candidate for developing the universal influenza vaccine is the ectodomain of the M2 protein (M2e). We designed and prepared an experimental DNA vaccine with an improved potential to induce anti-M2e immune response. The sequence for truncated NS1 protein followed by 4xM2e was inserted into the expression vector pTriEx-4 (pEx). M2e repeats were fused to the transmembrane domain and cytoplasmic tail of lysosome-associated membrane glycoprotein  2 isoform A (LAMP-2a) to target the M2e to the endo-lysosome pathway, facilitating increased antigen presentation by MHC II. Using confocal microscope immunofluorescence analysis, we confirmed a strong colocalization of pEx 4M2e-LAMP-2a with early endosomes and a weaker colocalization with late endosomes. BALB/c mice immunized with three doses of pEx 4M2e-LAMP-2a DNA vaccine and challenged with 2LD50 mouse-adapted influenza virus developed significantly (up to 16 times) higher anti-M2e antibody response in comparison to mice immunized with pEx 4M2e vaccine using the same immunization protocol. This was in correlation with the increased survival rate (near to 67% vs 50%) observed in animals immunized with pEx 4M2e-LAMP-2a DNA in comparison to mice immunized with pEx 4M2e. Keywords: influenza A; matrix protein 2 ectodomain; NS1; LAMP-2a; DNA vaccine.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Vaccines, DNA , Animals , Antibodies, Viral , Antibody Formation , Endosomes , Lysosomes , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Vaccines, DNA/genetics , Viral Matrix Proteins
2.
J Virol Methods ; 247: 107-113, 2017 09.
Article in English | MEDLINE | ID: mdl-28610903

ABSTRACT

Infections caused by highly variable influenza A viruses (IAVs) pose perpetual threat to humans as well as to animals. Their surveillance requires reliable methods for their qualitative and quantitative analysis. The most frequently utilized quantification method is the titration by plaque assay or 50% tissue culture infectious dose estimation by TCID50. However, both methods are time-consuming. Moreover, some IAV strains form hardly visible plaques, and the evaluation of TCID50 is subjective. Employment of immuno-staining into the classic protocols for plaque assay or TCID50 assay enables to avoid these problems and moreover, shorten the time needed for reliable infectious virus quantification. Results obtained by these two alternatives of classic virus titration methods were compared to the newer rapid culture assay (RCA), where titration endpoint of infectious virus was estimated microscopically based on the immuno-staining of infected cells. In our analysis of compared methods, five different IAV strains of H1, H3 and H5 subtypes were used and results were statistically evaluated. We conclude that the RCA proved to be at least as reliable in assessment of infectious viral titer as plaque assay and TCID50, considering the employed immuno-staining.


Subject(s)
Influenza A virus/isolation & purification , Staining and Labeling/methods , Viral Load/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...