Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3157, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32081873

ABSTRACT

Active manipulation of the polarization states at terahertz frequencies is crucially helpful for polarization-sensitive spectroscopy, having significant applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. The weakness of polarization manipulation provided by natural materials can be overcomed by chiral metamaterials. Chiral metamaterials have a huge potential to achieve the necessary polarization effects, hence they provide the basis for applications such as ultracompact polarization components. Terahertz chiral metamaterials that allow dynamic polarization modulation of terahertz waves are of great practical interest and still challenging. Here, we show that terahertz metasurface based on the four conjugated "petal" resonators integrated with multi-layered graphene (MLG) can enable dynamically tunable chiroptical response using optical pumping. In particular, a change of ellipticity angle of 20° is observed around 0.76 THz under optical pumping by a 980 nm continuous wave (CW) laser. Furthermore, using temporal coupled-mode theory, our study also reveals that the chiroptical response of the proposed multi-layered graphene-based metasurface is strongly dependent on the influence of optical pumping on the loss parameters of resonance modes, leading to actively controllable polarization states of the transmitted terahertz waves. The present work paves the way for the realization of fundamental terahertz components capable for active polarization manipulation.

2.
Opt Express ; 23(20): 25738-46, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480088

ABSTRACT

The transformation optics cloak was proposed for the medium with the angle dependent tensors of permittivity and permeability consisted of the right-handed and left-handed metamaterial media. The cloaking effect was numerically simulated using finite element method in the terahertz frequency range for different wave sources. The impact of cloaking medium thickness on the invisibility effect was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...