Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 49(24): 11439-48, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21086984

ABSTRACT

Stopped-flow kinetic studies of the oxidation of Fe(III)-TAML catalysts, [ F e{1,2-X(2)C(6)H(2)-4,5-( NCOCMe(2) NCO)(2)CMe(2)}(OH(2))](-) (1), by t-BuOOH and H(2)O(2) in water affording Fe(IV) species has helped to clarify the mechanism of the interaction of 1 with primary oxidants. The data collected for substituted Fe(III)-TAMLs at pH 6.0-13.8 and 17-45 °C has confirmed that the reaction is first order both in 1 and in peroxides. Bell-shaped pH profiles of the effective second-order rate constants k(I) have maximum values in the pH range of 10.5-12.5 depending on the nature of 1 and the selected peroxide. The "acidic" part is governed by the deprotonation of the diaqua form of 1 and therefore electron-withdrawing groups move the lower pH limit of the reactivity toward neutral pH, although the rate constants k(I) do not change much. The dissection of k(I) into individual intrinsic rate constants k(1) ([FeL(OH(2))(2)](-) + ROOH), k(2) ([FeL(OH(2))OH)](2-) + ROOH), k(3) ([FeL(OH(2))(2)](-) + ROO(-)), and k(4) ([FeL(OH(2))OH)](2-) + ROO(-)) provides a model for understanding the bell-shaped pH-profiles. Analysis of the pressure and substituent effects on the reaction kinetics suggest that the k(2) pathway is (i) more probable than the kinetically indistinguishable k(3) pathway, and (ii) presumably mechanistically similar to the induced cleavage of the peroxide O-O bond postulated for cytochrome P450 enzymes. The redox titration of 1 by Ir(IV) and electrochemical data suggest that under basic conditions the reduction potential for the half-reaction [Fe(IV)L(=O)(OH(2))](2-) + e(-) + H(2)O → [Fe(III)L(OH)(OH(2))](2-) + OH(-) is close to 0.87 V (vs NHE).


Subject(s)
Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Iron Compounds/chemistry , Macrocyclic Compounds/chemistry , Metalloporphyrins/chemistry , Catalysis , Kinetics , Potentiometry , Spectrophotometry, Ultraviolet , Thermodynamics
3.
Environ Sci Technol ; 42(4): 1296-300, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18351108

ABSTRACT

Endocrine disrupting chemicals (EDCs) impair living organisms by interfering with hormonal processes controlling cellular development Reduction of EDCs in water by an environmentally benign method is an important green chemistry goal. One EDC, 17alpha-ethinylestradiol (EE2), the active ingredient in the birth control pill, is excreted by humans to produce a major source of artificial environmental estrogenicity, which is incompletely removed by currenttechnologies used by municipal wastewater treatment plants (MWTPs). Natural estrogens found in animal waste from concentrated animal feeding operations (CAFOs) can also increase estrogenic activity of surface waters. An iron-tetraamidomacrocyclic ligand (Fe-TAML) activator in trace concentrations activates hydrogen peroxide and was shown to rapidly degrade these natural and synthetic reproductive hormones found in agricultural and municipal effluent streams. On the basis of liquid chromatography tandem mass spectrometry, apparent half-lives for 17 alpha- and 17 beta-estradiol, estriol, estrone, and EE2 in the presence of Fe-TAML and hydrogen peroxide were approximately 5 min and included a concomitant loss of estrogenic activity as established by E-Screen assay.


Subject(s)
Endocrine Disruptors/chemistry , Estrogens/chemistry , Macrocyclic Compounds/chemistry , Peroxides/chemistry , Catalysis , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...