Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29496, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681590

ABSTRACT

The woodworking applications are a fast-growing field that aims to create advanced coatings with superior wear resistance, reduced friction, and robust corrosion protection. Chromium silicon carbonitride (CrSiCN) coatings have emerged as a promising solution that offers a unique combination of properties ideal for various industrial applications. The C/N ratio significantly influences the coatings' mechanical and tribological properties. By optimizing the C/N ratio, this research aims to reveal new insights for CrSiCN coatings, enhancing their application in environments that require durability, efficiency, and longevity. In this paper, the effect of the C/N ratio on the structural, mechanical, and corrosion resistance of CrSiCN coatings deposited by cathodic arc evaporation on different steel substrates was studied. The main purpose was to enhance the mechanical and anticorrosion properties of the CrSiCN coatings and to select the optimum parameters for the deposition of layers with superior properties. The results showed that the final properties can be tailored by choosing specific deposition conditions. In this case, the C/N ratio proved to be critical since coatings with higher carbon content presented enhanced corrosion resistance, being able to withstand operating conditions similar to real-life.

2.
Materials (Basel) ; 14(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885342

ABSTRACT

Fiber-reinforced composites are used as restorative materials for prosthetic oral rehabilitation. Gastroesophageal reflux disease (GERD) is an accustomed affection with various oral manifestations. This study aimed to evaluate the behavior of two high-performance CAD/CAM milled reinforced composites (Trinia™, TriLor) in artificial saliva at different pH levels through immersion tests, and to determine if changes in mass or surface morphology at variable pH, specific for patients affected by GERD, appear. After investigating the elemental composition and surface morphology, the specimens were immersed in Carter Brugirard artificial saliva for 21 days at different pH values (5.7, 7.6, and varying the pH from 5.7 to 3). The values of the weighed masses during the immersion tests were statistically processed in terms of mean and standard deviation. Results suggested that irrespective of the medium pH, the two composites presented a similar mass variation in the range of -0.18 (±0.01)-1.82 (±0.02) mg after immersion, suggesting their stability when in contact with artificial saliva, an aspect which was also highlighted by scanning electron microscope (SEM) analysis performed on the immersed surfaces. Novel composite biomaterials can be a proper alternative for metal alloys used for prosthetic frameworks in patients suffering from GERD.

3.
Materials (Basel) ; 14(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34832293

ABSTRACT

The fabrication of fixed dental prostheses using aesthetic materials has become routine in today's dentistry. In the present study, three-unit full zirconia fixed prosthetic restorations obtained by computer-aided design/computer-aided manufacturing (CAD/CAM) technology were tested by bending trials. The prostheses were intended to replace the first mandibular left molar and were manufactured from four different types of zirconia bioceramics (KatanaTM Zirconia HTML and KatanaTM Zirconia STML/Kuraray Noritake Dental Inc.; NOVAZir® Fusion float® ml/NOVADENT/Dentaltechnik; and 3D PRO Zirconia/Bloomden Bioceramics). In total, sixteen samples were manufactured-four samples per zirconia material. Additionally, the morphology, grain size area distribution, and elemental composition were analyzed in parallelepiped samples made from the selected types of zirconia in three different areas, noted as the upper, middle, and lower areas. The scanning electron microscope (SEM) analysis highlighted that the grain size area varies with respect to the researched area and the type of material. Defects such as microcracks and pores were also noted to a smaller extent. In terms of grain size area, it was observed that most of the particles in all samples were under 0.5 µm2, while the chemical composition of the investigated materials did not vary significantly. The results obtained after performing the bending tests showed that a zirconia material with fewer structural defects and an increased percentage of grain size area under 0.5 µm2, ranging from ~44% in the upper area to ~74% in the lower area, exhibited enhanced mechanical behavior. Overall, the resulting values of all investigated parameters confirm that the tested materials are suitable for clinical use.

4.
Materials (Basel) ; 14(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443157

ABSTRACT

Cobalt-chromium (Co-Cr) alloys are widely utilized in dentistry. The salivary pH is a significant factor, which affects the characteristics and the behavior of dental alloys through corrosion. This study aimed to evaluate the corrosion behavior in artificial saliva with different pH values (3, 5.7, and 7.6) of two commercial Co-Cr dental alloys manufactured by casting and by milling. Corrosion resistance was determined by the polarization resistance technique, and the tests were carried out at 37 ± 1 °C, in Carter Brugirard artificial saliva. After the electrochemical parameters, it can be stated that the cast Co-Cr alloy has the lowest corrosion current density, the highest polarization resistance, and the lowest speed of corrosion in artificial saliva with pH = 7.6. In the case of milled Co-Cr alloy, the same behavior was observed, but in artificial saliva with pH = 5.7, it recorded the most electropositive values of open circuit potential and corrosion potential. Although both cast and milled Co-Cr alloys presented a poorer corrosion resistance in artificial saliva with a more acidic pH value, the milled Co-Cr alloy had better corrosion behavior, making this alloy a better option for the prosthetic treatment of patients suffering from GERD.

5.
Materials (Basel) ; 13(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126581

ABSTRACT

The present study assessed the retention forces corresponding to different telescopic systems used in removable prosthetic dentures. The telescopic systems were represented by Co-Cr alloy or zirconia-based primary crowns and Co-Cr secondary crowns. All crowns were manufactured using computer-aided design/computer-aided manufacturing technology (CAD/CAM). Two types of reference abutment teeth (upper canine and first upper molar) were selected in order to obtain the telescopic crowns and two taper angles-of 0° and 2°-were used for the design of the crowns. A number of 120 samples of telescopic crowns were obtained and subjected to mechanical tests, following a specific protocol, on a mechanical testing equipment. The retention of the telescopic systems was evaluated for different sets of cycles (up to 360), represented by movements that simulate the intraoral insertion and disinsertion of the telescopic systems. The present study highlights that the telescopic systems in which the primary crown is made of zirconia ceramics presents more advantages than those made of Co-Cr. All telescopic systems studied, highlighted that by modifying the taper angle from 0° to 2°, the retention forces have decreased, irrespective of the materials used for the fabrication of the primary crown, suggesting that by using a taper angle of 0°, which is known to be ideal, more efficient, and reliable prosthesis can be developed. Thus, even though the ceramic-metallic telescopic system exhibited the highest retention, all telescopic crowns evaluated registered values between 2-7 N, indicating that they are suitable for clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...