Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(4): 5537-5544, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35040618

ABSTRACT

Robust processes to fabricate densely packed high-aspect-ratio (HAR) vertical semiconductor nanostructures are important for applications in microelectronics, energy storage and conversion. One of the main challenges in manufacturing these nanostructures is pattern collapse, which is the damage induced by capillary forces from numerous solution-based processes used during their fabrication. Here, using an array of vertical silicon (Si) nanopillars as test structures, we demonstrate that pattern collapse can be greatly reduced by a solution-phase deposition method to coat the nanopillars with self-assembled monolayers (SAMs). As the main cause for pattern collapse is strong adhesion between the nanopillars, we systematically evaluated SAMs with different surface energy components and identified H-bonding between the surfaces to have the largest contribution to the adhesion. The advantage of the solution-phase deposition method is that it can be implemented before any drying step, which causes patterns to collapse. Moreover, after drying, these SAMs can be easily removed using a gentle air-plasma treatment right before the next fabrication step, leaving a clean nanopillar surface behind. Therefore, our approach provides a facile and effective method to prevent the drying-induced pattern collapse in micro- and nanofabrication processes.

2.
Proc Natl Acad Sci U S A ; 117(23): 12598-12605, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457154

ABSTRACT

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanostructures/chemistry , Stress, Mechanical , Anti-Bacterial Agents/chemistry , Bacterial Adhesion , Elasticity , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Silicon/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
3.
J Phys Chem Lett ; 11(7): 2751-2758, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32187494

ABSTRACT

Dense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood. Using in situ liquid cell transmission electron microscopy (TEM), we track the dynamics of nanoscale drying process of HAR silicon (Si) nanopillars in real-time and identify a new mechanism responsible for pattern collapse and nanostructure aggregation. During drying, deflection and aggregation of nanopillars are driven by thin-liquid-film instability, which results in much stronger capillary interactions between the nanopillars than the commonly proposed lateral meniscus interaction forces. The importance of thin-film instability in dewetting has been overlooked in prevalent theories on elastocapillary aggregation. The new dynamic mechanism revealed by in situ visualization is essential for the development of robust nanofabrication processes.

4.
Nanoscale ; 11(35): 16455-16462, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31451827

ABSTRACT

Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial , Nanostructures/chemistry , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Microscopy, Atomic Force , Nanostructures/ultrastructure , Prostheses and Implants , Pseudomonas aeruginosa/ultrastructure , Staphylococcus aureus/ultrastructure , Surface Properties
5.
J Colloid Interface Sci ; 536: 363-371, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30380435

ABSTRACT

The interface between water and a textured hydrophobic surface can exist in two regimes; either the Wenzel (surface-engulfed) or Cassie-Baxter (water-suspended) state. Better understanding of the influence of pattern geometry and spacing is crucial for the design of functional (super)hydrophobic surfaces, as inspired by numerous examples in nature. In this work, we have employed amplitude modulated - atomic force microscopy to visualize the air-water interface with an unprecedented degree of clarity on a superhydrophobic and a highly hydrophobic nanostructured surface. The images obtained provide the first real-time experimental visualization of the Cassie-Baxter wetting on the surface of biomimetic silicon nanopillars and a naturally superhydrophobic cicada wing. For both surfaces, the air-water interface was found to be remarkably well-defined, revealing a distinctly nanostructured air-water interface in the interstitial spacing. The degree of interfacial texture differed as a function of surface geometry. These results reveal that the air-water interface is heterogeneous in its structure and confirmed the presence of short-range interfacial ordering. Additionally, the overpressure values for each point on the interface were calculated, quantifying the difference in wetting behavior for the biomimetic and natural surface. Results suggest that highly-ordered, closely spaced nanofeatures facilitate robust Cassie-Baxter wetting states and therefore, can enhance the stability of (super)hydrophobic surfaces.


Subject(s)
Air , Biomimetic Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Water/chemistry , Particle Size , Surface Properties
6.
Sci Rep ; 8(1): 11637, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072798

ABSTRACT

Superhydrophobic surfaces are highly promising for self-cleaning, anti-fouling and anti-corrosion applications. However, accurate assessment of the lifetime and sustainability of super-hydrophobic materials is hindered by the lack of large area characterization of superhydrophobic breakdown. In this work, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is explored for a dynamic study of wetting transitions on immersed superhydrophobic arrays of silicon nanopillars. Spontaneous breakdown of the superhydrophobic state is triggered by in-situ modulation of the liquid surface tension. The high surface sensitivity of ATR-FTIR allows for accurate detection of local liquid infiltration. Experimentally determined wetting transition criteria show significant deviations from predictions by classical wetting models. Breakdown kinetics is found to slow down dramatically when the liquid surface tension approaches the transition criterion, which clearly underlines the importance of more accurate wetting analysis on large-area surfaces. Precise actuation of the superhydrophobic breakdown process is demonstrated for the first time through careful modulation of the liquid surface tension around the transition criterion. The developed ATR-FTIR method can be a promising technique to study wetting transitions and associated dynamics on various types of superhydrophobic surfaces.

7.
ACS Appl Mater Interfaces ; 9(42): 37484-37492, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28972738

ABSTRACT

The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

8.
Langmuir ; 33(15): 3601-3609, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28335608

ABSTRACT

In situ characterization of the underwater stability of superhydrophobic micro- and nanostructured surfaces is important for the development of self-cleaning and antifouling materials. In this work, we demonstrate a novel attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy-based method for large-area wetting characterization of silicon nanopillars. When air is present in between the structures, as is characteristic of the Cassie-Baxter state, the relative intensities of the water bands in the absorption spectrum change because of the wavelength-dependent attenuation of the evanescent wave. This phenomenon enables unambiguous identification of the wetting state and assessment of liquid impalement. Using mixtures of isopropanol and water with different concentrations, the breakdown of superhydrophobic states and the wetting hysteresis effects are systematically studied on uniform arrays of silicon nanopillars. A transition from the Cassie-Baxter to Wenzel state is observed when the isopropanol concentration exceeds 2.8 mol %, corresponding to a critical surface tension of 39 mN/m. Spontaneous dewetting does not occur upon decreasing the isopropanol concentration, and pure water can be obtained in a stable Wenzel state on the originally superhydrophobic substrates. The developed ATR-FTIR method can be promising for real-time monitoring of the wetting kinetics on nanostructured surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...