Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 115: 111121, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600720

ABSTRACT

Dual-modality contrast agents (DMCA), such as radiolabeled magnetic nanoparticles, have attracted significant attention in diagnostic applications due to their potency for the timely and accurate diagnosis of diseases. The hemocompatibility of a candidate DMCA with human blood is essential for the investigation of its application in vivo. In this respect, here we focused on the evaluation of the hemocompatibility of a new DMCA, that is based on iron oxide nanoparticles (i.e. Fe3O4 magnetite), with human red blood cells (RBCs). The specific iron oxide nanoparticles are surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (-DPD) and radiolabeled with gallium-68 (68Ga), resulting in 68Ga-DPD-Fe3O4. RBCs of five healthy individuals are incubated at room temperature for 120 min without and with 68Ga-DPD-Fe3O4 at concentrations 0.1 and 1.0 mg/ml. Optical microscopy (OM) and atomic force microscopy (AFM) are employed to assess detailed information on the overall morphological and geometrical characteristics of the entire cell at the microscopic (10-6 m) level and on the membrane morphology at the nanoscopic (10-9 m) level. In addition, a standard hematology analyzer (HA) is used to obtain complete blood count information. At the microscopic level, the combined OM, AFM and HA data revealed that the overall shape/size characteristics of RBCs were preserved upon incubation with 68Ga-DPD-Fe3O4. However, at the nanoscopic level, the AFM results revealed two different kinds of local deconstructions of the RBCs membrane, termed holes and ulcer-like abnormalities, that were observed in both the DMCA-free and DMCA-incubated samples. Holes did not exhibit any statistically significant difference upon incubation with the 68Ga-DPD-Fe3O4 DMCA. On the contrary, ulcer-like abnormalities exhibited two statistically significant differences upon incubation with the 68Ga-DPD-Fe3O4 DMCA. First, increased percentage of RBCs having at least one ulcer-like abnormality; in DMCA-incubated samples 78.6 ± 11.6% for CDMCA = 0.1 mg/ml and 80.4 ± 11.1% for CDMCA = 1.0 mg/ml, while in DMCA-free samples 61.2 ± 8.4% prior to and 63.6 ± 13.5% after incubation. Second, increased number of ulcer-like abnormalities per RBC; in DMCA-incubated samples 4.26 ± 0.62 for CDMCA = 0.1 mg/ml and 3.99 ± 0.97 for CDMCA = 1.0 mg/ml, while in DMCA-free samples 2.84 ± 0.54 prior to and 2.98 ± 0.50 after incubation. The combined OM, AFM and HA results prove fair hemocompatibility of the 68Ga-DPD-Fe3O4 DMCA with human RBCs, thus documenting its potential use in imaging applications.


Subject(s)
Diphosphonates/chemistry , Erythrocytes/chemistry , Gallium Radioisotopes/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Adult , Diagnostic Imaging , Female , Healthy Volunteers , Humans , Male , Middle Aged , Nanoparticles , Young Adult
2.
Nanomaterials (Basel) ; 8(5)2018 May 06.
Article in English | MEDLINE | ID: mdl-29734795

ABSTRACT

Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.

3.
Mater Sci Eng C Mater Biol Appl ; 75: 157-164, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415449

ABSTRACT

Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er)3O4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)3O4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er)3O4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.


Subject(s)
Citric Acid , Coated Materials, Biocompatible , Europium , Ferric Compounds , Fibroblasts/metabolism , Materials Testing , Nanoparticles/chemistry , Yttrium Radioisotopes , Zebrafish/metabolism , Animals , Cell Line , Citric Acid/chemistry , Citric Acid/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacokinetics , Europium/chemistry , Europium/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Fibroblasts/cytology , Humans , Magnetic Fields
4.
Contrast Media Mol Imaging ; 2017: 6951240, 2017.
Article in English | MEDLINE | ID: mdl-29445321

ABSTRACT

The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity (>91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.


Subject(s)
Contrast Media , Diphosphonates , Ferric Compounds , Gallium Radioisotopes , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Positron-Emission Tomography/methods , Animals , Contrast Media/chemistry , Contrast Media/pharmacology , Diphosphonates/chemistry , Diphosphonates/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/pharmacology , HEK293 Cells , Humans , Isotope Labeling , Mice , Proof of Concept Study
5.
Mater Sci Eng C Mater Biol Appl ; 43: 439-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25175234

ABSTRACT

In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs.


Subject(s)
Durapatite , Iodine Radioisotopes , Nanoparticles , Animals , Crystallography, X-Ray , Iodine Radioisotopes/pharmacokinetics , Male , Microscopy, Electron, Scanning , Particle Size , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tissue Distribution
6.
Pharmacol Rep ; 64(4): 896-901, 2012.
Article in English | MEDLINE | ID: mdl-23087141

ABSTRACT

BACKGROUND: This study was performed to investigate expression and distribution of glucocorticoid receptor (GR) in the rat adrenal cortex, acute effect of ethanol on its expression and possible role of endogenous nitric oxide (NO) in this phenomenon. METHODS: Adult female Wistar rats showing diestrus day 1 were treated with: a) ethanol (2 or 4 g/kg body weight (b.w.), ip), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), well-known competitive inhibitor of all isoforms of NO synthase (NOS), (30 mg/kg b.w., sc) followed by ethanol (4 g/kg, ip) 3 h later and c) L-NAME (30 mg/kg b.w., sc) followed by saline (ip) 3 h later. Untreated rats were used as controls. Adrenocortical expression of GR was estimated by immunohistochemistry. RESULTS: Strong nuclear GR staining was observed throughout the cortex of control rats. Acute ethanol treatment significantly decreased the expression of GR in the zona fasciculata and zona reticularis. Blockade of NO formation had no influence on this effect of ethanol, whereas L-NAME itself induced significant decline in GR immunoreactivity. CONCLUSIONS: Obtained findings are the first to demonstrate localization and distribution of the GR throughout the rat adrenal cortex and to suggest that ethanol as well as endogenous NO may modulate adrenocortical expression of this steroid receptor.


Subject(s)
Adrenal Cortex/drug effects , Adrenal Cortex/metabolism , Ethanol/pharmacology , Nitric Oxide/pharmacology , Receptors, Glucocorticoid/biosynthesis , Animals , Female , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar
7.
J Pharm Sci ; 101(6): 2194-203, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415405

ABSTRACT

In this study, tin fluoride colloid (SnF-c) was prepared, labeled with yttrium-90 ((90)Y), and characterized with respect to its physicochemical properties and biological behavior in an animal model. Particle size of SnF-c, at constant concentration of SnF(2), was dependent on pH, concentration of sodium fluoride (NaF), temperature, and time. The particle size of SnF-c decreased with an increase in NaF concentration and a decrease in reaction mixture pH. Radiolabeling yield of (90)Y-SnF-c at higher temperature increased and it was greater than 98% for the preparation at 95 °C. The (90)Y-SnF-c demonstrated high in vitro stability both in human serum and human synovial fluid at 37 °C up to 7 days. In vivo distribution studies in healthy male Wistar rats of (90)Y-SnF-c (particles <1 µm), following intravenous administration, revealed that the localization takes place preferably in the liver. The (90)Y-SnF-c (particles >1 µm) was well retained in the synovial space for 96 h after intra-articular injection, whereas leakage of (90)Y from the joint was 1.96% over this period. Because of high labeling yield and stability, (90)Y-SnF-c might be a promising agent for radiosynovectomy or therapy of liver malignancies.


Subject(s)
Colloids , Tin Fluorides/chemistry , Yttrium Radioisotopes/chemistry , Animals , Male , Microscopy, Electron, Scanning , Particle Size , Rats , Rats, Wistar , Tin Fluorides/pharmacokinetics , Tissue Distribution , Yttrium Radioisotopes/pharmacokinetics
8.
Biomaterials ; 30(36): 6940-6, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19781768

ABSTRACT

In the present study, we compared the effects of nanocrystalline fullerene suspension (nanoC(60)) on tumour cell growth in vitro and in vivo. NanoC(60) suspension was prepared by solvent exchange using tetrahydrofuran to dissolve C(60). In vitro, nanoC(60) caused oxidative stress, mitochondrial depolarization and caspase activation, leading to apoptotic and necrotic death in mouse B16 melanoma cells. Biodistribution studies demonstrated that intraperitoneally injected radiolabeled (125I) nanoC(60) readily accumulated in the tumour tissue of mice subcutaneously inoculated with B16 cells. However, intraperitoneal administration of nanoC(60) over the course of two weeks starting from melanoma cell implantation not only failed to reduce, but significantly augmented tumour growth. The tumour-promoting effect of nanoC(60) was accompanied by a significant increase in splenocyte production of the immunoregulatory free radical nitric oxide (NO), as well as by a reduction in splenocyte proliferative responses to T- and B-cell mitogens ConcanavalinA and bacterial lipopolysaccharide, respectively. A negative correlation between NO production and splenocyte proliferation indicated a possible role of NO in reducing the proliferation of splenocytes from nanoC(60)-injected mice. These data demonstrate that nanoC(60), in contrast to its potent anticancer activity in vitro, can potentiate tumour growth in vivo, possibly by causing NO-dependent suppression of anticancer immune response.


Subject(s)
Antineoplastic Agents , Cell Line, Tumor , Fullerenes , Immunosuppression Therapy , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caspases/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Enzyme Activation , Fullerenes/chemistry , Fullerenes/pharmacology , Materials Testing , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Spleen/cytology , Spleen/metabolism
9.
Pharm Res ; 25(6): 1365-76, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17999162

ABSTRACT

PURPOSE: The fullerene (C60/C70 mixture-C60/70) nanocrystalline suspension prepared by solvent exchange method using tetrahydrofyran (THF/nC60/70) and polyhydroxylated C60/70 [C60/70(OH)n] were compared for their ability to modulate cytotoxicity of the proinflammatory cytokine tumor necrosis factor (TNF). MATERIALS AND METHODS: TNF-induced cytotoxicity was assessed in L929 fibrosarcoma cells by crystal violet assay. The type of cell death (apoptosis/necrosis), production of reactive oxygen species, mitochondrial depolarization and caspase activation were determined by flow cytometry using the appropriate reporter dyes. RESULTS: THF/nC60/70 augmented, while C60/70(OH)n reduced the cytotoxicity of TNF. The numbers of cells undergoing apoptosis/necrosis, as well as of those displaying the activation of apoptosis-inducing enzymes of caspase family, were respectively increased or reduced by THF/nC60/70 or C60/70(OH)n. The antioxidant N-acetylcysteine and mitochondrial permeability transition inhibitor cyclosporin A each partly blocked the cytotoxic action of TNF, indicating the involvement of oxidative stress and mitochondrial dysfunction in the TNF cytotoxicity. Accordingly, THF/nC60/70 or C60/70(OH)n potentiated or suppressed, respectively, TNF-triggered oxidative stress and mitochondrial depolarization. CONCLUSION: The ability of different fullerene preparations to modulate TNF-induced oxidative stress and subsequent cell death suggests their potential value in the TNF-based cancer therapy or prevention of TNF-dependent tissue damage.


Subject(s)
Apoptosis/drug effects , Fullerenes/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Caspases/metabolism , Cell Line, Tumor , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Necrosis , Reactive Oxygen Species/metabolism
10.
Biomaterials ; 28(36): 5437-48, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17884160

ABSTRACT

Because of the ability to induce cell death in certain conditions, the fullerenes (C(60)) are potential anticancer and toxic agents. The colloidal suspension of crystalline C(60) (nano-C(60), nC(60)) is extremely toxic, but the mechanisms of its cytotoxicity are not completely understood. By combining experimental analysis and mathematical modelling, we investigate the requirements for the reactive oxygen species (ROS)-mediated cytotoxicity of different nC(60) suspensions, prepared by solvent exchange method in tetrahydrofuran (THF/nC(60)) and ethanol (EtOH/nC(60)), or by extended mixing in water (aqu/nC(60)). With regard to their capacity to generate ROS and cause mitochondrial depolarization followed by necrotic cell death, the nC(60) suspensions are ranked in the following order: THF/nC(60)>EtOH/nC(60)>aqu/nC(60). Mathematical modelling of singlet oxygen ((1)O(2)) generation indicates that the (1)O(2)-quenching power (THF/nC(60)

Subject(s)
Fullerenes/toxicity , Reactive Oxygen Species/metabolism , Animals , Cell Line , Cell Survival/drug effects , Colloids , Humans , Mice , Solvents
11.
Eur J Pharmacol ; 568(1-3): 89-98, 2007 Jul 30.
Article in English | MEDLINE | ID: mdl-17560995

ABSTRACT

Using the rat glioma cell line C6 and the human glioma cell line U251, we demonstrate the multiple mechanisms underlying the in vitro anticancer effects of the C(60) fullerene water suspension (nano-C(60) or nC(60)) produced by solvent exchange method. Nano-C(60) in a dose-dependent manner reduced the tumor cell numbers after 24 h of incubation. The observed antiglioma action of nC(60) at high concentration (1 microg/ml) was due to a reactive oxygen species-mediated necrotic cell damage that was partly dependent on oxidative stress-induced activation of extracellular signal-regulated kinase (ERK). On the other hand, low-dose nC(60) (0.25 microg/ml) did not induce either necrotic or apoptotic cell death, but caused oxidative stress/ERK-independent cell cycle block in G(2)/M phase and subsequent inhibition of tumor cell proliferation. Treatment with either high-dose or low-dose nC(60) caused the appearance of acidified intracytoplasmic vesicles indicative of autophagy, but only the antiglioma effect of low-dose nC(60) was significantly attenuated by inhibiting autophagy with bafilomycin A1. Importantly, primary rat astrocytes were less sensitive than their transformed counterparts to a cytostatic action of low-dose nC(60). These data provide grounds for further development of nC(60) as an anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Fullerenes/pharmacology , Glioma/drug therapy , Nanoparticles , Animals , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glioma/metabolism , Humans , Lipid Peroxidation/drug effects , Mitogen-Activated Protein Kinases/metabolism , Rats , Reactive Oxygen Species/metabolism
12.
Biomaterials ; 27(29): 5049-58, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16784774

ABSTRACT

We investigated the effect of gamma-irradiation on the cytotoxicity of pure C60 solubilized in water by using tetrahydrofuran (THF/n-C60 or THF/n-C60). In contrast to THF/n-C60, its gamma-irradiated counterpart failed to generate oxygen radicals and cause extracellular signal-regulated kinase (ERK)-dependent necrotic cell death in various types of mammalian cells. Moreover, gamma-irradiated THF/n-C60 protected cells from the oxidative stress induced by native THF/n-C60 or hydrogen peroxide. The observed biological effects were associated with gamma-irradiation-mediated decomposition of THF and subsequent derivatization of the n-C60 surface. These results for the first time demonstrate gamma-irradiation-mediated changes in the physico-chemical properties of THF-prepared nanocrystalline C60, resulting in a complete loss of its cytotoxic effect and its conversion to a cytoprotective agent.


Subject(s)
Fullerenes/toxicity , Gamma Rays , Nanostructures , Animals , Cell Line, Tumor , Fullerenes/radiation effects , Furans/radiation effects , Furans/toxicity , Mice
13.
Toxicol Sci ; 91(1): 173-83, 2006 May.
Article in English | MEDLINE | ID: mdl-16476688

ABSTRACT

The mechanisms underlying the cytotoxic action of pure fullerene suspension (nano-C60) and water-soluble polyhydroxylated fullerene [C60(OH)n] were investigated. Crystal violet assay for cell viability demonstrated that nano-C60 was at least three orders of magnitude more toxic than C60(OH)n to mouse L929 fibrosarcoma, rat C6 glioma, and U251 human glioma cell lines. Flow cytometry analysis of cells stained with propidium iodide (PI), PI/annexin V-fluorescein isothiocyanate, or the redox-sensitive dye dihydrorhodamine revealed that nano-C60 caused rapid (observable after few hours), reactive oxygen species (ROS)-associated necrosis characterized by cell membrane damage without DNA fragmentation. In contrast, C60(OH)n caused delayed, ROS-independent cell death with characteristics of apoptosis, including DNA fragmentation and loss of cell membrane asymmetry in the absence of increased permeability. Accordingly, the antioxidant N-acetylcysteine protected the cell lines from nano-C60 toxicity, but not C60(OH)n toxicity, while the pan-caspase inhibitor z-VAD-fmk blocked C60(OH)n-induced apoptosis, but not nano-C60-mediated necrosis. Finally, C60(OH)n antagonized, while nano-C60 synergized with, the cytotoxic action of oxidative stress-inducing agents hydrogen peroxide and peroxynitrite donor 3-morpholinosydnonimine. Therefore, unlike polyhydroxylated C60 that exerts mainly antioxidant/cytoprotective and only mild ROS-independent pro-apoptotic activity, pure crystalline C60 seems to be endowed with strong pro-oxidant capacity responsible for the rapid necrotic cell death.


Subject(s)
Fullerenes/pharmacology , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Flow Cytometry , Humans , Hydroxylation , Mice , Rats , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...