Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727376

ABSTRACT

Here, we present the results of the synthesis, surface modification, and properties analysis of magnetite-based nanoparticles, specifically Co0.047Fe2.953O4 (S1) and Co0.086Fe2.914O4 (S2). These nanoparticles were synthesized using the co-precipitation method at 80 °C for 2 h. They exhibit a single-phase nature and crystallize in a spinel-type structure (space group Fd3¯m). Transmission electron microscopy analysis reveals that the particles are quasi-spherical in shape and approximately 11 nm in size. An observed increase in saturation magnetization, coercivity, remanence, and blocking temperature in S2 compared to S1 can be attributed to an increase in magnetocrystalline anisotropy due to the incorporation of Co ions in the crystal lattice of the parent compound (Fe3O4). The heating efficiency of the samples was determined by fitting the Box-Lucas equation to the acquired temperature curves. The calculated Specific Loss Power (SLP) values were 46 W/g and 23 W/g (under HAC = 200 Oe and f = 252 kHz) for S1 and S2, respectively. Additionally, sample S1 was coated with citric acid (Co0.047Fe2.953O4@CA) and poly(acrylic acid) (Co0.047Fe2.953O4@PAA) to obtain stable colloids for further tests for magnetic hyperthermia applications in cancer therapy. Fits of the Box-Lucas equation provided SLP values of 21 W/g and 34 W/g for CA- and PAA-coated samples, respectively. On the other hand, X-ray photoelectron spectroscopy analysis points to the catalytically active centers Fe2+/Fe3+ and Co2+/Co3+ on the particle surface, suggesting possible applications of the samples as heterogeneous self-heating catalysts in advanced oxidation processes under an AC magnetic field.

2.
J Environ Radioact ; 272: 107333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043219

ABSTRACT

J. nigra leaf contains mixture of various pharmacologically active compounds and it is assumed that they may have the potential radioprotective effect. The purpose of this work was to predict radioprotective doses by correlating changes in organ distribution of radiopharmaceuticals with extract dose levels and rat body weight using response surface methodology (RSM) based on a second-order polynomial equation. The extract was administered daily by oral gavage to rats at dose of 6.9, 10.3, or 13.7 mg kg-1 body weight (bw) day-1 for 10 days. On the eleventh day, 0.1 ml of the one radiopharmaceutical (Na99mTcO4, 99mTc-dimercaptosuccinic acid and 99mTc-tin colloid) was injected into the tail vein. The statistical parameters: the coefficient of determination (0.81-0.95), the coefficient of variation (3.05-11.1), the adequate precision (8.82-19.12) and the mean relative percentage deviation (± 2.3-8.2) were indicated the precision and reliability of RSM. Using RSM, the predicted daily dose of leaf extract ranging from 11.19 to 11.99 mg kg-1 bw may be considered as an optimal daily radiopotective dose for protection of organs from radiation in cases of planned radiation exposures.


Subject(s)
Juglans , Radiation Monitoring , Rats , Animals , Reproducibility of Results , Radiopharmaceuticals , Body Weight , Plant Extracts/pharmacology
3.
Pharmaceutics ; 15(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37514129

ABSTRACT

As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy.

4.
Int J Pharm ; 628: 122288, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36252644

ABSTRACT

Surface modification of magnetic nanoparticles with poly-l-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-l-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-l-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu-PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Animals , Rats , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Polylysine , Tryptophan , Precision Medicine , Proline , Rats, Wistar , Iodine Radioisotopes
5.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957159

ABSTRACT

The combination of two imaging modalities in a single agent has received increasing attention during the last few years, since its synergistic action guarantees both accurate and timely diagnosis. For this reason, dual-modality contrast agents (DMCAs), such as radiolabeled iron oxide (namely Fe3O4) nanoparticles, constitute a powerful tool in diagnostic applications. In this respect, here we focus on the synthesis of a potential single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) DMCA, which consists of Fe3O4 nanoparticles, surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) and radiolabeled with 99mTc, [99mTc]Tc-DPD-Fe3O4. The in vitro stability results showed that this DMCA is highly stable after 24 h of incubation in phosphate buffer saline (~92.3% intact), while it is adequately stable after 24 h of incubation with human serum (~67.3% intact). Subsequently, [99mTc]Tc-DPD-Fe3O4 DMCA was evaluated in vivo in mice models through standard biodistribution studies, MR imaging and gamma-camera imaging. All techniques provided consistent results, clearly evidencing noticeable liver uptake. Our work documents that [99mTc]Tc-DPD-Fe3O4 has all the necessary characteristics to be a potential DMCA.

6.
Nanotechnology ; 33(40)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35728572

ABSTRACT

Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml-1in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR âˆ¼ 253 W g-1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the90Y radionuclide, emitting ß-radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Animals , Citric Acid , Humans , Hyperthermia, Induced/methods , Magnetic Fields , Magnetic Iron Oxide Nanoparticles , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasms/drug therapy , Yttrium Radioisotopes
7.
Int J Pharm ; 608: 121106, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34537268

ABSTRACT

Micro-sized multivesicular liposomes were prepared, radiolabeled with 177Lu, and tested in vitro and in vivo to evaluate the potential of 177Lu-labeled micro liposomes in radiosynoviorthesis (RSO) therapy. A standard reverse-phase procedure of liposome preparation with a lipid mixture of DPPC: CHOL (80:20%) was used for the synthesis. TEM and fluorescence microscopy imaging were performed to determine the size, shape, and structure of the prepared liposomes. Both measurements are in good agreement while TEM micrographs additionally indicate to a large multivesicular inner structure of prepared liposomes. A simple and straightforward procedure was used for liposome radiolabeling with 177Lu, a well-known and commonly used radionuclide in radiotherapy with favorable properties, that can be exploited in RSO therapy. Radiolabeled 177Lu-liposomes were tested in vitro for stability and then injected into the knee joints of Wistar rats where liposome in vivo behavior was followed up to 30 days post injection. Results from both ex vivo biodistribution and in vivo imaging studies presented a high stability and retention (>94 %ID) of 177Lu-micro liposomes in the synovial liquid for the entire observation period. Leakage of free 177Lu or 177Lu-liposomes from the synovial fluid has not been detected, indicating to a possible application of 177Lu-liposomes in radiosynoviorthesis (RSO) therapy.


Subject(s)
Liposomes , Radioisotopes , Animals , Rats , Rats, Wistar , Tissue Distribution
8.
Int J Radiat Biol ; 97(12): 1687-1695, 2021.
Article in English | MEDLINE | ID: mdl-34473599

ABSTRACT

PURPOSE: Recent studies with doxycycline as adjuvant therapy to conventional chemotherapy have shown promising results in cancer therapy. The current study aimed to examine the capability of 177Lu-labeled tetracycline ligand, doxycycline hyclate, to use as an anticancer agent. MATERIALS AND METHODS: Doxycycline was radiolabeled with beta-emitting radioisotope 177Lu. Complex formation and its interaction with DNA were investigated electrochemically. Binding of 177Lu-doxycycline to CT 26 cell line was done. Biodistribution of 177Lu-doxycycline was examined in healthy Wistar rats and CT26 colon carcinoma tumor-bearing mice by i.v. and i.p. administration, respectively. RESULTS: Doxycycline hyclate was successfully radiolabeled with 177Lu in high radiolabeling yield (>99%). The radiolabeled complex was stable in vitro in saline and human serum over 72 h. Non-radioactive Lu-doxycycline complex formation was demonstrated electrochemically as well. Intercalative interactions of the doxycycline and Lu-doxycycline with DNA were proved using simultaneously spectrophotometric and electrochemical methods. The binding of the radiolabeled complex with plasma proteins was 4.0 ± 0.4%. The partition coefficient showed the lipophilic nature of the complex similar to the free ligand. The binding curve demonstrates binding from 0.1 nM concentrations of 177Lu-doxycycline, with half-binding estimated ∼100 nM. Biodistribution studies of 177Lu-doxycycline in CT26 colon tumor-bearing mice showed a satisfactory accumulation rate in the tumor (2.88 ± 0.85% ID/g) 3 h after intraperitoneal injection. Both the hepatobiliary system and the urinary system were prominent as excretory routes of the radiolabeled complex. CONCLUSION: Considering obtained results, 177Lu-doxycycline complex, due to its excellent electrochemical and biological characteristics, with emphasis on the binding ability to DNA via intercalative interaction as well as significant accumulation in the tumor, is suitable for further in vivo studies to investigate its potential use in cancer treatment.


Subject(s)
Doxycycline , Lutetium , Radiopharmaceuticals , Animals , Cell Line, Tumor , Ligands , Mice , Rats , Rats, Wistar , Tissue Distribution
9.
J Control Release ; 332: 301-311, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33675880

ABSTRACT

Liposomes are promising drug's delivery systems due to decreased toxicity of the liposome-encapsulated drug, but wider clinical application requires their more efficient tumor targeting with uptake, controlled drug release and higher shelf life. The unique metabolic characteristics of cancer cells based on higher demand for energy and therefore increased glucose utilization were exploited in the design of glucose modified liposomes (GML) with the aim to provide increased tumor targeting via glucose transporters and increased ability of drug delivery into tumor cells. Tumor accumulating potential of GML and non-glucose liposomes (NGL) were investigated on CT26 and LS174T tumor-bearing mice by simple and reliable radiotracer method using 177Lu as radioactive marker. Both liposomes, GML and NGL were radiolabeled in high radiolabeling yield, showing high in vitro stability in biological media, as the main prerequisite for the biodistribution studies. Tumors displayed significantly better accumulation of 177Lu-GML with the maximum uptake 6 h post-injection (5.8 ± 0.2%/g in LS174T tumor and 5.1 ± 0.5%/g in CT26 tumor), compared to negligible uptake of 177Lu-NGL (0.6 ± 0.1%/g in LS174T tumor and 0.9 ± 0.2%/g in CT26 tumor). Results of comparative biodistribution studies of 177Lu-NGL and 177Lu-GML indicate that increased accumulation of GML is enabled by glucose transporters and subsequent endocytosis, resulting in their prolonged retention in tumor tissues (up to 72 h). Direct radiolabeling of liposomes with 177Lu may be used not only for biodistribution studies using radiotracking, but also for cancer treatment.


Subject(s)
Liposomes , Neoplasms , Animals , Cell Line, Tumor , Drug Delivery Systems , Glucose , Mice , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Tissue Distribution
10.
Food Chem ; 346: 128896, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33421901

ABSTRACT

Type of the wood used for the aging highly influences the quality of alcoholic beverages. In this research we explored the potential of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to establish fingerprints characteristic for each wood and to enable determining the type of the wood used in the aging process. Eleven different wood samples were used to prepare three different types of spirits during 15 months. The highest extraction rate was obtained during the first month, while further aging was followed with almost constant amount of extracted polyphenols. Black locust, myrobalan plum, and mulberry extracts were discriminated from the spirits aged in oak and wild cherry wood when statistical analysis was applied. Although clear classification of all samples was not achieved, this long term study demonstrated a potential of both CV and DPV for differentiating wood species used in the aging, hence in the quality control of spirits.


Subject(s)
Alcoholic Beverages/analysis , Chemical Fractionation/methods , Solvents/chemistry , Wood/chemistry , Fruit/chemistry , Green Chemistry Technology , Time Factors , Wood/microbiology
11.
Int J Pharm ; 587: 119628, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32681867

ABSTRACT

Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m-1 and resonant frequency of 252 kHz was 123.1 W∙g-1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Animals , Antibodies, Neoplasm , Hyperthermia , Iodine Radioisotopes , Magnetic Iron Oxide Nanoparticles , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/therapy
12.
ACS Appl Mater Interfaces ; 11(44): 41109-41117, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31610125

ABSTRACT

Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (>97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 µg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging.


Subject(s)
Ferric Compounds/chemistry , Magnetics , Nanoparticles/chemistry , Radiopharmaceuticals/chemistry , Acrylic Resins/chemistry , Animals , Beta Particles , Cell Line, Tumor , Cell Survival/drug effects , Citric Acid/chemistry , Hyperthermia, Induced , Lutetium/chemistry , Magnetic Fields , Mice , Nanoparticles/toxicity , Neoplasms/diagnostic imaging , Particle Size , Polyethylene Glycols/chemistry , Radioisotopes/chemistry , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/therapeutic use , Technetium/chemistry , Yttrium Radioisotopes/chemistry
13.
Mater Sci Eng C Mater Biol Appl ; 102: 124-133, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146983

ABSTRACT

Novel theranostic nanoplatform is expected to integrate imaging for guiding and monitoring of the tumor therapy with great therapeutic efficacy and fewer side effects. Here we describe the preparation of a multifunctional 99mTc-bisphosphonate-coated magnetic nanoparticles (MNPs) based on Fe3O4 and coated with two hydrophilic bisphosphonate ligands, i.e., methylene diphosphonate (MDP) and 1-hydroxyethane-1,1- diphosphonate (HEDP). The presence of the bisphosphonates on the MNPs surface, enabled their biocompatibility, colloidal stability and successful binding of the radionuclide. The morphology, size, structure, surface charge and magnetic properties of obtained bisphosphonate-coated Fe3O4 MNPs were characterized by transmission electron microscopy, X-ray powder diffraction, dynamic light scattering, laser Doppler electrophoresis, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The specific power absorption values for Fe3O4-MDP and Fe3O4-HEDP were 113 W/g and 141 W/g, respectively, indicated their heating ability under applied magnetic field. Coated MNPs were radiolabeled with 99mTc using stannous chloride as the reducing agent in a reproducible high yield (95% for Fe3O4-MDP and 97% for Fe3O4-HEDP MNPs) and were remained stable in saline and human serum for 24 h. Ex vivo biodistribution studies presented significant liver and spleen uptake in healthy Wistar rats after intravenous administration at all examined time points due to the colloidal nature of both 99mTc-MNPs. Results of scintigraphy studies are in accordance with ex vivo biodistribution studies, demonstrating high in vivo stability of radiolabeled MNPs and therefore results of both methods were proved as accurate information on the biodistribution profile of investigated MNPs. Overall, in vitro and in vivo stability as well as heating ability, indicate that biocompatible radiolabeled bisphosphonate magnetic nanoparticles exhibit promising potential as a theranostic nanoagent.


Subject(s)
Coated Materials, Biocompatible/chemistry , Diphosphonates/chemistry , Magnetite Nanoparticles/chemistry , Organotechnetium Compounds/chemistry , Theranostic Nanomedicine , Animals , Hyperthermia, Induced , Magnetite Nanoparticles/ultrastructure , Male , Particle Size , Rats, Wistar , Temperature , Time Factors , Tissue Distribution , X-Ray Diffraction
14.
Acta Vet Hung ; 65(3): 446-458, 2017 09.
Article in English | MEDLINE | ID: mdl-28956489

ABSTRACT

Early embryonic development may be negatively affected by insufficient progesterone (P4) production. Therefore, the aim of our study was to increase P4 by gonadotropin-releasing hormone (GnRH) and/or human chorionic gonadotropin (hCG) treatments after inducing oestrus by prostaglandin (PG) treatment. Lactating Simmental dairy cows (n = 110), between 1 to 5 lactations, with an average milk production of 6,500 1/305 days, at 40-80 days postpartum were used and grouped as follows: (1) PG + GnRH treatment at AI (GnRH group), (2) PG + hCG treatment at day 7 after AI (hCG group), (3) PG + GnRH at AI + hCG treatment at day 7 after AI (GnRH/hCG group), and (4) spontaneous oestrus (C: control group). All animals were double inseminated (at the time of oestrus detection and 12 ± 2 h thereafter). Blood serum and milk samples were collected at the day of observed oestrus (day 0), and 14, 21 and 28 days after AI. Serum P4 was determined using a commercial radioimmunoassay (RIA) test (INEP, Zemun), and milk P4 was determined using enzyme-linked immunoassay (ELISA) test (NIV Novi Sad). Pregnancy status was confirmed by ultrasonography between days 28 and 35 after AI. Differences of serum or milk P4 medians, pregnancy (and calving) rate were determined using Dunn's Multiple Comparison Tests and Z test, respectively. Serum P4 medians were significantly higher at days 14, 21 and 28 after AI in the hCG-treated animals, indicating increased luteal activity, with a similar tendency in whole milk P4 values. Treatment with hCG during the early luteal phase significantly contributed to the maintenance of gestation at days 28-35 after AI, and also increased the calving rate in Simmental dairy cows.


Subject(s)
Cattle , Chorionic Gonadotropin/administration & dosage , Estrus Synchronization/drug effects , Luteal Phase/drug effects , Pregnancy Outcome/veterinary , Progesterone/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/pharmacology , Insemination, Artificial/veterinary , Pregnancy , Pregnancy Rate , Progesterone/blood
15.
Biol Trace Elem Res ; 180(2): 223-232, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28378114

ABSTRACT

The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin ß-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.


Subject(s)
Animal Nutritional Physiological Phenomena , Chromium/therapeutic use , Glucose Intolerance/veterinary , Insulin Resistance , Muscle, Skeletal/metabolism , Signal Transduction , Yeast, Dried/therapeutic use , Animals , Animals, Inbred Strains , Biopsy/veterinary , Cattle , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Dairying , Female , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Glucose Intolerance/prevention & control , Glucose Transporter Type 4/agonists , Glucose Transporter Type 4/metabolism , Hamstring Muscles , Insulin Receptor Substrate Proteins/agonists , Insulin Receptor Substrate Proteins/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/pathology , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/agonists , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/agonists , Receptor, Insulin/metabolism , Weaning
16.
J Mater Chem B ; 5(44): 8738-8747, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-32264267

ABSTRACT

Radiolabeled magnetic nanoparticles (MNPs) coated with hydrophilic phosphate ligands, i.e., imidodiphosphate (IDP) and inositol hexaphosphate (IHP), were developed as multifunctional agents to localize both radioactivity and magnetic energy at a tumor site. The coating of MNPs with phosphates made them biocompatible, increased their colloidal stability and allowed binding of the radionuclide 90Y to the available functional groups on the surface of the MNPs. IDP and IHP have not hitherto been used for the coating of MNPs and the results of this study of the functionalized MNPs showed that the phosphate groups influenced the modification of the surface of MNPs. Characterization of the MNPs was performed using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering and laser Doppler electrophoresis. The specific power absorption values obtained for MNPs (46.95-80.76 W g-1) in different physiological media indicated their possible application in hyperthermia treatment. Both types of coated MNPs were 90Y-labeled in a reproducible high yield (>98%). In vitro studies of 90Y-MNPs in saline and human serum showed their high stability after 72 h. The biodistribution pattern of the MNPs after intravenous administration to healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-Fe3O4-IDP and 90Y-Fe3O4-IHP MNPs were predominantly found in the liver (85.21% ID and 86.22% ID), followed by the spleen (9.23% ID and 8.82% ID) and the lungs (1.53% ID and 1.53% ID). The results of this comprehensive study showed that radiolabeled biocompatible phosphate magnetic complexes hold great promise for therapeutic uses combining magnetic hyperthermia and radiotherapy.

17.
J Biomed Mater Res A ; 103(1): 126-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24616186

ABSTRACT

Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe3O4-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe3O4(Fe3O4-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe3O4-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe3O4-Naked MNPs and 19.61%ID/g for (90)Y-Fe3O4-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe3O4-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe3O4-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe3O4-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy.


Subject(s)
Magnetics , Nanoparticles , Neoplasms, Experimental/radiotherapy , Yttrium Radioisotopes/therapeutic use , Animals , Male , Microscopy, Electron, Scanning , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tissue Distribution , Yttrium Radioisotopes/pharmacokinetics
18.
Alcohol Alcohol ; 46(5): 523-8, 2011.
Article in English | MEDLINE | ID: mdl-21610084

ABSTRACT

AIMS: The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. METHODS: Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. RESULTS: Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. CONCLUSION: Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.


Subject(s)
Adrenal Cortex/drug effects , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Nitric Oxide/physiology , Adrenal Cortex/pathology , Adrenal Cortex/physiology , Adrenocorticotropic Hormone/biosynthesis , Adrenocorticotropic Hormone/blood , Animals , Corticosterone/biosynthesis , Corticosterone/blood , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Estrus/physiology , Female , NG-Nitroarginine Methyl Ester/pharmacology , Radioimmunoassay , Rats , Rats, Wistar , Time Factors , Zona Fasciculata/pathology
19.
Radiat Res ; 159(5): 612-20, 2003 May.
Article in English | MEDLINE | ID: mdl-12710872

ABSTRACT

We investigated the effects of the alpha-particle emitters (149)Tb and (213)Bi coupled to a tumor-specific antibody targeting the mutated delta 9 E-cadherin (d9 E-Cad) on single cells and cell pellets. The d9 mutation of the adhesion molecule E-cadherin is found in 10% of diffuse-type gastric cancers and is not expressed in normal tissue. Human breast cancer cells (MDA-MB-435S) transfected with d9 E-Cad or the wild-type E-cadherin gene were used to study the effects of anti-d9 E-Cad MAb coupled to (149)Tb and (213)Bi ((149)Tb-d9 MAb and (213)Bi-d9 MAb). The density of binding sites determined on transfected MDA tumor cells by Scatchard analysis and flow cytometry varied from 4 x 10(4) to 6 x 10(4) antigens per cell. Internalization of radioimmunoconjugates by cells expressing d9 E-Cad was less than 10% of bound antibody within 240 min. The effect of the radioimmunoconjugates on cell suspensions and cell pellets was quantified by [(3)H]thymidine incorporation, and the dose to the cell nuclei was determined using microdosimetric calculations. (149)Tb and (213)Bi immunoconjugates affected cells in suspension similarly. Significant differences in the proliferation capacity of d9 E-cadherin- and wild-type E-cadherin-expressing cells were observed at activity concentrations around 185 kBq/ml, corresponding to antibody concentrations between 200 ng/ml and 1000 ng/ml. Proliferation after incubation with (213)Bi-d9 MAb was 50% greater in pelleted wild-type E-Cad-expressing cells compared to wild-type E-Cad cells in suspension. In contrast, the proliferation of pelleted d9 E-Cad cells was similar to that of d9 E-Cad cells in suspension. For (149)Tb-d9 MAb, no significant difference was found between pelleted cells and cells in suspension for low activity concentrations. However, at high activity concentrations, (149)Tb-d9 MAb had only a small effect on pelleted cells. These in vitro studies demonstrate different effects of (149)Tb and (213)Bi conjugated to a tumor-specific antibody toward single cells and tumor cell pellets. Microdosimetric simulation of single cell survival after alpha-particle irradiation modeled the experimental results with reasonable accuracy.


Subject(s)
Alpha Particles/therapeutic use , Bismuth/therapeutic use , Cadherins/immunology , Exons , Neoplasms/radiotherapy , Radioimmunotherapy , Terbium/therapeutic use , Cadherins/genetics , Cell Survival/radiation effects , Gene Deletion , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...