Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 270(2): 132-8, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12908106

ABSTRACT

Mutation in the cauliflower gene Or causes high levels of beta-carotene to accumulate in various tissues of the plant that are normally devoid of carotenoids. To decipher the molecular basis by which Or regulates carotenoid accumulation, we have undertaken the isolation of Or by a map-based cloning strategy. Two previously isolated, locus-specific, sequence-characterized amplified region (SCAR) markers that flank Or were employed for the analysis of a large segregating population consisting of 1632 F(2) individuals, and a high-resolution genetic linkage map of the Or locus region was developed. To facilitate positional cloning, we constructed a cauliflower genomic library in a bacterial artificial chromosome (BAC) vector, using high molecular weight DNA from Or homozygotes. The BAC library comprises 60,288 clones with an average insert size of 110 kb, and represents an estimated 10-fold coverage of the genome. A BAC contig encompassing the Or locus was established by screening the library with a marker that is closely linked to Or and by identifying overlapping BAC clones by chromosome walking. Physical mapping delimited the Or locus to a 50-kb DNA fragment within a single BAC clone, which corresponds to a genetic interval of 0.3 cM.


Subject(s)
Brassica/genetics , Brassica/metabolism , Genes, Plant , beta Carotene/genetics , beta Carotene/metabolism , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , DNA, Plant/genetics , Genomic Library , Mutation , Physical Chromosome Mapping
2.
Plant Cell ; 13(3): 627-43, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11251101

ABSTRACT

As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.


Subject(s)
Arabidopsis/genetics , Brassica/genetics , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Brassicaceae/genetics , Chromosome Mapping , Cloning, Molecular , Crossing Over, Genetic , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , Glycoproteins , Haplotypes , Locus Control Region , Molecular Sequence Data , Pollen/physiology , Polymerase Chain Reaction , Polymorphism, Genetic , Protein Kinases , Recombinant Proteins , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity
3.
Mamm Genome ; 11(5): 360-3, 2000 May.
Article in English | MEDLINE | ID: mdl-10790534

ABSTRACT

We have constructed a Bacterial Artificial Chromosome (BAC) library that provides 5.5-fold redundant coverage of the chicken genome. The library was made by cloning partial HindIII-digested high-molecular-weight (HMW) DNA of a female White Leghorn chicken into the HindIII site of the vector pECBAC1. Several modifications of standard protocols were necessary to clone efficiently large partial HindIII DNA fragments. The library consists of 49,920 clones arranged in 130 384-well plates. An average insert size of 134 kb was estimated from the analysis of 152 randomly selected BAC clones. The average number of NotI restriction sites per clone was 0.77. After individual growth, DNA was isolated of the pooled clones of each 384-well plate, and subsequently DNA of each plate was isolated from the individual row and column pools. Screening of the Wageningen chicken BAC library was performed by two-dimensional PCR with 125 microsatellite markers. For 124 markers at least one BAC clone was obtained. FISH experiments of 108 BAC clones revealed chimerism in less than 1%. The number of different BAC clones per marker present in the BAC library was examined for 35 markers which resulted in a total of 167 different BAC clones. Per marker the number of BAC clones varied from 1 to 11, with an average of 4.77. The chicken BAC library constitutes an invaluable tool for positional cloning and for comparative mapping studies.


Subject(s)
Chickens/genetics , Polymerase Chain Reaction/methods , Animals , Chromosomes, Bacterial , DNA/genetics , Female , Genetic Markers , In Situ Hybridization, Fluorescence , Microsatellite Repeats
4.
Plant Cell ; 12(1): 23-33, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10634905

ABSTRACT

A genetic analysis was performed to study the frequency of recombination for intervals across the Brassica S locus region. No recombination was observed between the S locus glycoprotein gene and the S receptor kinase gene in the segregating populations that we analyzed. However, a number of recombination breakpoints in regions flanking these genes were identified, allowing the construction of an integrated genetic and physical map of the genomic region encompassing one S haplotype. We identified, based on the pollination phenotype of plants homozygous for recombinant S haplotypes, a 50-kb region that encompasses all specificity functions in the S haplotype that we analyzed. Mechanisms that might operate to preserve the tight linkage of self-incompatibility specificity genes within the S locus complex are discussed in light of the relatively uniform recombination frequencies that we observed across the S locus region and of the structural heteromorphisms that characterize different S haplotypes.


Subject(s)
Brassica/genetics , Chromosome Mapping , Genes, Plant , Haplotypes , Multigene Family , Phenotype , Pollen/genetics , Recombination, Genetic
5.
Plant Physiol ; 120(2): 383-90, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10364389

ABSTRACT

In this paper we describe a novel, dominant pleiotropic tomato (Lycopersicon esculentum)-ripening mutation, Cnr (colorless nonripening). This mutant occurred spontaneously in a commercial population. Cnr has a phenotype that is quite distinct from that of the other pleiotropic tomato-ripening mutants and is characterized by fruit that show greatly reduced ethylene production, an inhibition of softening, a yellow skin, and a nonpigmented pericarp. The ripening-related biosynthesis of carotenoid pigments was abolished in the pericarp tissue. The pericarp also showed a significant reduction in cell-to-cell adhesion, with cell separation occurring when blocks of tissue were incubated in water alone. The mutant phenotype was not reversed by exposure to exogenous ethylene. Crosses with other mutant lines and the use of a restriction fragment length polymorphism marker demonstrated that Cnr was not allelic with the pleiotropic ripening mutants nor, alc, rin, Nr, Gr, and Nr-2. The gene has been mapped to the top of chromosome 2, also indicating that it is distinct from the other pleiotropic ripening mutants. We undertook the molecular characterization of Cnr by examining the expression of a panel of ripening-related genes in the presence and absence of exogenous ethylene. The pattern of gene expression in Cnr was related to, but differed from, that of several of the other well-characterized mutants. We discuss here the possible relationships among nor, Cnr, and rin in a putative ripening signal cascade.

6.
Plant Cell ; 9(2): 237-47, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9061954

ABSTRACT

In Brassica, the recognition of self-related pollen by the stigma is controlled by the highly polymorphic S locus that encodes several linked and coadapted genes and can span several hundred kilobases. We used pulsed-field gel electrophoresis to analyze the structure of different S haplotypes. We show that the S2 and S13 haplotypes of Brassica oleracea contain extensive sequence divergence and rearrangement relative to each other. In contrast, haplotypic configuration is more conserved between B. oleracea S13 and B. campestris S8, two haplotypes that have been proposed to be derived from a common ancestral haplotype based on sequence comparisons. These results support the view that extensive restructuring of the S locus preceded speciation in Brassica. This structural heteromorphism, together with haplotype-specific sequences, may suppress recombination within the S locus complex, potentially providing a mechanism for maintaining the linkage of coadapted allelic combinations of genes over time.


Subject(s)
Brassica/genetics , Glycoproteins/genetics , Haploidy , Plant Proteins/genetics , Electrophoresis, Gel, Pulsed-Field , Restriction Mapping , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL
...